Generalized prediction framework for reconstructed image properties using neural networks

Grace J. Gang, Kailun Cheng, Xueqi Guo, J. Webster Stayman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Model-based reconstruction (MBR) algorithms in CT have demonstrated superior dose-image quality tradeoffs compared to traditional analytical methods. However, the nonlinear and data-dependent nature of these al- gorithms pose significant challenges for performance evaluation and parameter optimization. To address these challenges, this work presents an analysis framework for quantitative and predictive modeling of image proper- ties in general nonlinear MBR algorithms. We propose to characterize the reconstructed appearance of arbitrary stimuli by the generalized system response function that accounts for dependence on the imaging conditions, reconstruction parameters, object, and the stimulus itself (size, contrast, location). We estimate this nonlinear function using a multilayer perceptron neural network by providing input and output pairs that samples the range of imaging parameters of interest. The feasibility of this approach was demonstrated for predicting the appearance of a spiculated lesion reconstructed by a penalized-likelihood objective with a Huber penalty in a physical phantom as a function of its location and reconstruction parameters β and I. The generalized system response functions predicted from the trained neural network show good agreement with those computed from mean reconstructions, proving the ability of the framework in mapping out the nonlinear function for combinations of imaging parameters not present in the training data. We demonstrated utility of the framework to achieve desirable (e.g., non-blocky) lesion appearance in arbitrary locations in the phantom without the need for performing actual reconstructions. The proposed prediction framework permits efficient and quantifiable performance evaluations to provide robust control and understanding of image properties for general classes of nonlinear MBR algorithms.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Hilde Bosmans
PublisherSPIE
ISBN (Electronic)9781510625433
DOIs
StatePublished - 2019
EventMedical Imaging 2019: Physics of Medical Imaging - San Diego, United States
Duration: Feb 17 2019Feb 20 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10948
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Physics of Medical Imaging
CountryUnited States
CitySan Diego
Period2/17/192/20/19

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Generalized prediction framework for reconstructed image properties using neural networks'. Together they form a unique fingerprint.

Cite this