GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells

Anil Kumar Bhunia, Gü Nter Schwarzmann, Subroto B Chatterjee

Research output: Contribution to journalArticle

Abstract

Sialic acid containing glycosphingolipids (gangliosides) are expressed on the surface of all mammalian cells and have been implicated in regulating various biological phenomena; however, the detailed signaling mechanisms involved in this process are not known. We report here a novel aspect of disialoganglioside, GD3-mediated regulation of cell proliferation and cell death via the recruitment of reactive oxygen species (ROS). A low concentration (2.5-10 μM) of GD3, incubated with human aortic smooth muscle cells for a short period of time (10-30 min), stimulates superoxide generation via the activation of both NADPH oxidase and NADH oxidase activity. This leads to downstream signaling leading to cell poliferation and apoptosis. However, [3H]GD3 incubated with the cells under such conditions was found in a trypsin-sensitive fraction that was separable from endogenous GD3. The exact mechanism causing ROS generation and downstream signaling remains to be elucidated. The uptake of GD3 was accompanied by a 2.5-fold stimulation in the activity of mitogen-activated protein (MAP) kinase and 5-fold stimulation in cell proliferation. Preincubation of cells with membrane-permeable antioxidants, pyrrolidine dithiocarbamate, and N-acetylcysteine abrogated the superoxide generation and cell proliferation. In contrast, at higher concentrations (50-200 μM) GD3 inhibited the generation of superoxides but markedly stimulated the generation of nitric oxide (NO) (10-fold compared with control). This in turn stimulated mitochondrial cytochrome c release and intrachromosomal DNA fragmentation, which lead to apoptosis. In sum, at a low concentration, GD3 recruits superoxides to activate p44 MAPK and stimulates cell proliferation. In contrast, at high concentrations GD3 recruits nitric oxide to scavenge superoxide radicals that triggered signaling events that led to apoptosis. These observations might have relevance in regard to the potential role of GD3 in aortic smooth muscle cell proliferation and apoptosis that may contribute to plaque rupture in atherosclerosis.

Original languageEnglish (US)
Pages (from-to)16396-16402
Number of pages7
JournalJournal of Biological Chemistry
Volume277
Issue number19
DOIs
StatePublished - May 10 2002

Fingerprint

Cell proliferation
Superoxides
Smooth Muscle Myocytes
Muscle
Reactive Oxygen Species
Cells
Cell Proliferation
Apoptosis
Nitric Oxide
Biological Phenomena
Glycosphingolipids
Mitogen-Activated Protein Kinase 3
Gangliosides
NADPH Oxidase
Acetylcysteine
N-Acetylneuraminic Acid
DNA Fragmentation
Cell death
Cytochromes c
Mitogen-Activated Protein Kinases

ASJC Scopus subject areas

  • Biochemistry

Cite this

GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells. / Bhunia, Anil Kumar; Schwarzmann, Gü Nter; Chatterjee, Subroto B.

In: Journal of Biological Chemistry, Vol. 277, No. 19, 10.05.2002, p. 16396-16402.

Research output: Contribution to journalArticle

@article{3cb39946ece243ee834ba693ea83f1d6,
title = "GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells",
abstract = "Sialic acid containing glycosphingolipids (gangliosides) are expressed on the surface of all mammalian cells and have been implicated in regulating various biological phenomena; however, the detailed signaling mechanisms involved in this process are not known. We report here a novel aspect of disialoganglioside, GD3-mediated regulation of cell proliferation and cell death via the recruitment of reactive oxygen species (ROS). A low concentration (2.5-10 μM) of GD3, incubated with human aortic smooth muscle cells for a short period of time (10-30 min), stimulates superoxide generation via the activation of both NADPH oxidase and NADH oxidase activity. This leads to downstream signaling leading to cell poliferation and apoptosis. However, [3H]GD3 incubated with the cells under such conditions was found in a trypsin-sensitive fraction that was separable from endogenous GD3. The exact mechanism causing ROS generation and downstream signaling remains to be elucidated. The uptake of GD3 was accompanied by a 2.5-fold stimulation in the activity of mitogen-activated protein (MAP) kinase and 5-fold stimulation in cell proliferation. Preincubation of cells with membrane-permeable antioxidants, pyrrolidine dithiocarbamate, and N-acetylcysteine abrogated the superoxide generation and cell proliferation. In contrast, at higher concentrations (50-200 μM) GD3 inhibited the generation of superoxides but markedly stimulated the generation of nitric oxide (NO) (10-fold compared with control). This in turn stimulated mitochondrial cytochrome c release and intrachromosomal DNA fragmentation, which lead to apoptosis. In sum, at a low concentration, GD3 recruits superoxides to activate p44 MAPK and stimulates cell proliferation. In contrast, at high concentrations GD3 recruits nitric oxide to scavenge superoxide radicals that triggered signaling events that led to apoptosis. These observations might have relevance in regard to the potential role of GD3 in aortic smooth muscle cell proliferation and apoptosis that may contribute to plaque rupture in atherosclerosis.",
author = "Bhunia, {Anil Kumar} and Schwarzmann, {G{\"u} Nter} and Chatterjee, {Subroto B}",
year = "2002",
month = "5",
day = "10",
doi = "10.1074/jbc.M200877200",
language = "English (US)",
volume = "277",
pages = "16396--16402",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "19",

}

TY - JOUR

T1 - GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells

AU - Bhunia, Anil Kumar

AU - Schwarzmann, Gü Nter

AU - Chatterjee, Subroto B

PY - 2002/5/10

Y1 - 2002/5/10

N2 - Sialic acid containing glycosphingolipids (gangliosides) are expressed on the surface of all mammalian cells and have been implicated in regulating various biological phenomena; however, the detailed signaling mechanisms involved in this process are not known. We report here a novel aspect of disialoganglioside, GD3-mediated regulation of cell proliferation and cell death via the recruitment of reactive oxygen species (ROS). A low concentration (2.5-10 μM) of GD3, incubated with human aortic smooth muscle cells for a short period of time (10-30 min), stimulates superoxide generation via the activation of both NADPH oxidase and NADH oxidase activity. This leads to downstream signaling leading to cell poliferation and apoptosis. However, [3H]GD3 incubated with the cells under such conditions was found in a trypsin-sensitive fraction that was separable from endogenous GD3. The exact mechanism causing ROS generation and downstream signaling remains to be elucidated. The uptake of GD3 was accompanied by a 2.5-fold stimulation in the activity of mitogen-activated protein (MAP) kinase and 5-fold stimulation in cell proliferation. Preincubation of cells with membrane-permeable antioxidants, pyrrolidine dithiocarbamate, and N-acetylcysteine abrogated the superoxide generation and cell proliferation. In contrast, at higher concentrations (50-200 μM) GD3 inhibited the generation of superoxides but markedly stimulated the generation of nitric oxide (NO) (10-fold compared with control). This in turn stimulated mitochondrial cytochrome c release and intrachromosomal DNA fragmentation, which lead to apoptosis. In sum, at a low concentration, GD3 recruits superoxides to activate p44 MAPK and stimulates cell proliferation. In contrast, at high concentrations GD3 recruits nitric oxide to scavenge superoxide radicals that triggered signaling events that led to apoptosis. These observations might have relevance in regard to the potential role of GD3 in aortic smooth muscle cell proliferation and apoptosis that may contribute to plaque rupture in atherosclerosis.

AB - Sialic acid containing glycosphingolipids (gangliosides) are expressed on the surface of all mammalian cells and have been implicated in regulating various biological phenomena; however, the detailed signaling mechanisms involved in this process are not known. We report here a novel aspect of disialoganglioside, GD3-mediated regulation of cell proliferation and cell death via the recruitment of reactive oxygen species (ROS). A low concentration (2.5-10 μM) of GD3, incubated with human aortic smooth muscle cells for a short period of time (10-30 min), stimulates superoxide generation via the activation of both NADPH oxidase and NADH oxidase activity. This leads to downstream signaling leading to cell poliferation and apoptosis. However, [3H]GD3 incubated with the cells under such conditions was found in a trypsin-sensitive fraction that was separable from endogenous GD3. The exact mechanism causing ROS generation and downstream signaling remains to be elucidated. The uptake of GD3 was accompanied by a 2.5-fold stimulation in the activity of mitogen-activated protein (MAP) kinase and 5-fold stimulation in cell proliferation. Preincubation of cells with membrane-permeable antioxidants, pyrrolidine dithiocarbamate, and N-acetylcysteine abrogated the superoxide generation and cell proliferation. In contrast, at higher concentrations (50-200 μM) GD3 inhibited the generation of superoxides but markedly stimulated the generation of nitric oxide (NO) (10-fold compared with control). This in turn stimulated mitochondrial cytochrome c release and intrachromosomal DNA fragmentation, which lead to apoptosis. In sum, at a low concentration, GD3 recruits superoxides to activate p44 MAPK and stimulates cell proliferation. In contrast, at high concentrations GD3 recruits nitric oxide to scavenge superoxide radicals that triggered signaling events that led to apoptosis. These observations might have relevance in regard to the potential role of GD3 in aortic smooth muscle cell proliferation and apoptosis that may contribute to plaque rupture in atherosclerosis.

UR - http://www.scopus.com/inward/record.url?scp=0037053401&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037053401&partnerID=8YFLogxK

U2 - 10.1074/jbc.M200877200

DO - 10.1074/jbc.M200877200

M3 - Article

C2 - 11861654

AN - SCOPUS:0037053401

VL - 277

SP - 16396

EP - 16402

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 19

ER -