Fusion plasma experiments on TFTR: A 20 year retrospective

R. J. Hawryluk, S. Batha, W. Blanchard, M. Beer, M. G. Bell, R. E. Bell, H. Berk, S. Bernabei, M. Bitter, B. Breizman, N. L. Bretz, R. Budny, C. E. Bush, J. Callen, R. Camp, S. Cauffman, Z. Chang, C. Z. Cheng, D. S. Darrow, R. O. DendyW. Dorland, H. Duong, P. C. Efthimion, D. Ernst, N. J. Fisch, R. Fisher, R. J. Fonck, E. D. Fredrickson, G. Y. Fu, H. P. Furth, N. N. Gorelenkov, B. Grek, L. R. Grisham, G. W. Hammett, G. R. Hanson, H. W. Herrmann, M. C. Herrmann, K. W. Hill, J. Hogan, J. C. Hosea, W. A. Houlberg, M. Hughes, R. A. Hulse, D. L. Jassby, F. C. Jobes, D. W. Johnson, R. Kaita, S. Kaye, J. S. Kim, M. Kissick, A. V. Krasilnikov, H. Kugel, A. Kumar, B. Leblanc, F. M. Levinton, C. Ludescher, R. P. Majeski, J. Manickam, D. K. Mansfield, E. Mazzucato, J. McChesney, D. C. McCune, K. M. McGuire, D. M. Meade, S. S. Medley, R. Mika, D. R. Mikkelsen, S. V. Mirnov, D. Mueller, A. Nagy, G. A. Navratil, R. Nazikian, M. Okabayashi, H. K. Park, W. Park, S. F. Paul, G. Pearson, M. P. Petrov, C. K. Phillips, M. Phillips, A. T. Ramsey, M. H. Redi, G. Rewoldt, S. Reznik, A. L. Roquemore, J. Rogers, E. Ruskov, S. A. Sabbagh, M. Sasao, G. Schilling, J. Schivell, G. L. Schmidt, S. D. Scott, I. Semenov, C. H. Skinner, T. Stevenson, B. C. Stratton, J. D. Strachan, W. Stodiek, E. Synakowski, H. Takahashi, W. Tang, G. Taylor, M. E. Thompson, S. von Goeler, A. von Halle, R. T. Walters, R. White, R. M. Wieland, M. Williams, J. R. Wilson, K. L. Wong, G. A. Wurden, M. Yamada, V. Yavorski, K. M. Young, L. Zakharov, M. C. Zarnstorff, S. J. Zweben

Research output: Contribution to journalReview articlepeer-review

Abstract

The Tokamak Fusion Test Reactor (TFTR) (R. J. Hawryluk, to be published in Rev. Mod. Phys.) experiments on high-temperature plasmas, that culminated in the study of deuterium-tritium D-T plasmas containing significant populations of energetic alpha particles, spanned over two decades from conception to completion. During the design of TFTR, the key physics issues were magnetohydrodynamic (MHD) equilibrium and stability, plasma energy transport, impurity effects, and plasma reactivity. Energetic particle physics was given less attention during this phase because, in part, of the necessity to address the issues that would create the conditions for the study of energetic particles and also the lack of diagnostics to study the energetic particles in detail. The worldwide tokamak program including the contributions from TFTR made substantial progress during the past two decades in addressing the fundamental issues affecting the performance of high-temperature plasmas and the behavior of energetic particles. The progress has been the result of the construction of new facilities, which enabled the production of high-temperature well-confined plasmas, development of sophisticated diagnostic techniques to study both the background plasma and the resulting energetic fusion products, and computational techniques to both interpret the experimental results and to predict the outcome of experiments.

Original languageEnglish (US)
Pages (from-to)1577-1589
Number of pages13
JournalPhysics of Plasmas
Volume5
Issue number5 PART 1
DOIs
StatePublished - May 1998

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Fusion plasma experiments on TFTR: A 20 year retrospective'. Together they form a unique fingerprint.

Cite this