Functional instability allows access to DNA in longer transcription activator-like effector (Tale) arrays

Kathryn Geiger Schuller, Jaba Mitra, Taekjip Ha, Doug Barrick

Research output: Contribution to journalArticlepeer-review


Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of "functional instability" that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.

Original languageEnglish (US)
Article numbere38298
StatePublished - Feb 2019


  • Deterministic modeling
  • FRET
  • Functional instability
  • Single-molecule biophysics
  • TALE repeat

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Functional instability allows access to DNA in longer transcription activator-like effector (Tale) arrays'. Together they form a unique fingerprint.

Cite this