Functional brain networks in schizophrenia: A review

Vince D. Calhoun, Tom Eichele, Godfrey Pearlson

    Research output: Contribution to journalArticle

    Abstract

    Functional magnetic resonance imaging (fMRI) has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event-related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA) which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large-scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their inter-relationships with fMRI has great potential to improve our understanding of schizophrenia.

    Original languageEnglish (US)
    Article number17
    JournalFrontiers in Human Neuroscience
    Volume3
    Issue numberAUG
    DOIs
    StatePublished - Aug 17 2009

      Fingerprint

    Keywords

    • Functional connectivity
    • Functional network connectivity
    • Independent component analysis
    • Schizophrenia
    • fMRI

    ASJC Scopus subject areas

    • Neuropsychology and Physiological Psychology
    • Neurology
    • Psychiatry and Mental health
    • Biological Psychiatry
    • Behavioral Neuroscience

    Cite this