From oocyte to 16-cell stage

Cytoplasmic and cortical reorganizations that pattern the ascidian embryo

Christian Sardet, Alexandre Paix, François Prodon, Philippe Dru, Janet Chenevert

Research output: Contribution to journalReview article

Abstract

The dorsoventral and anteroposterior axes of the ascidian embryo are denned before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.

Original languageEnglish (US)
Pages (from-to)1716-1731
Number of pages16
JournalDevelopmental Dynamics
Volume236
Issue number7
DOIs
StatePublished - Jul 2007
Externally publishedYes

Fingerprint

Urochordata
Endoplasmic Reticulum
Oocytes
Embryonic Structures
Centrosome
RNA
Spermatozoa
Messenger RNA
Blastomeres
Zygote
Meiosis
Motion Pictures
Mothers
Actomyosin
Oogenesis
Gastrulation
Calcium Signaling
Metaphase
Actin Cytoskeleton
Fertilization

Keywords

  • a-v/D-V/A-P axes
  • Ascidian
  • Embryo
  • Fertilization
  • Maturation
  • Oocyte
  • Polarity

ASJC Scopus subject areas

  • Developmental Biology

Cite this

From oocyte to 16-cell stage : Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. / Sardet, Christian; Paix, Alexandre; Prodon, François; Dru, Philippe; Chenevert, Janet.

In: Developmental Dynamics, Vol. 236, No. 7, 07.2007, p. 1716-1731.

Research output: Contribution to journalReview article

Sardet, Christian ; Paix, Alexandre ; Prodon, François ; Dru, Philippe ; Chenevert, Janet. / From oocyte to 16-cell stage : Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. In: Developmental Dynamics. 2007 ; Vol. 236, No. 7. pp. 1716-1731.
@article{813a0637d8404d0181346298ba0dc152,
title = "From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo",
abstract = "The dorsoventral and anteroposterior axes of the ascidian embryo are denned before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on {"}Film archive: ascidian eggs and embryos{"} at http://biodev.obs-vlfr.fr/recherche/biomarcell/.",
keywords = "a-v/D-V/A-P axes, Ascidian, Embryo, Fertilization, Maturation, Oocyte, Polarity",
author = "Christian Sardet and Alexandre Paix and Fran{\cc}ois Prodon and Philippe Dru and Janet Chenevert",
year = "2007",
month = "7",
doi = "10.1002/dvdy.21136",
language = "English (US)",
volume = "236",
pages = "1716--1731",
journal = "Developmental Dynamics",
issn = "1058-8388",
publisher = "Wiley-Liss Inc.",
number = "7",

}

TY - JOUR

T1 - From oocyte to 16-cell stage

T2 - Cytoplasmic and cortical reorganizations that pattern the ascidian embryo

AU - Sardet, Christian

AU - Paix, Alexandre

AU - Prodon, François

AU - Dru, Philippe

AU - Chenevert, Janet

PY - 2007/7

Y1 - 2007/7

N2 - The dorsoventral and anteroposterior axes of the ascidian embryo are denned before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.

AB - The dorsoventral and anteroposterior axes of the ascidian embryo are denned before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.

KW - a-v/D-V/A-P axes

KW - Ascidian

KW - Embryo

KW - Fertilization

KW - Maturation

KW - Oocyte

KW - Polarity

UR - http://www.scopus.com/inward/record.url?scp=34447575736&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34447575736&partnerID=8YFLogxK

U2 - 10.1002/dvdy.21136

DO - 10.1002/dvdy.21136

M3 - Review article

VL - 236

SP - 1716

EP - 1731

JO - Developmental Dynamics

JF - Developmental Dynamics

SN - 1058-8388

IS - 7

ER -