Fractal frontiers in cardiovascular magnetic resonance: Towards clinical implementation

Gabriella Captur, Audrey L. Karperien, Chunming Li, Filip Zemrak, Catalina Tobon-Gomez, Xuexin Gao, David A. Bluemke, Perry M. Elliott, Steffen E. Petersen, James C. Moon

Research output: Contribution to journalReview articlepeer-review

Abstract

Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain. This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community. By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools.

Original languageEnglish (US)
Article number80
JournalJournal of Cardiovascular Magnetic Resonance
Volume17
Issue number1
DOIs
StatePublished - Sep 7 2015

Keywords

  • Cardiovascular magnetic resonance
  • Image processing
  • Segmentation

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Fractal frontiers in cardiovascular magnetic resonance: Towards clinical implementation'. Together they form a unique fingerprint.

Cite this