Fibronectin-like immunoreactivity in Helisoma buccal ganglia: evidence that an endogenous fibronectin-like molecule promotes neurite outgrowth.

M. P. Mattson, S. B. Kater

Research output: Contribution to journalArticle

Abstract

We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.

Original languageEnglish (US)
Pages (from-to)239-256
Number of pages18
JournalJournal of Neurobiology
Volume19
Issue number3
StatePublished - Apr 1988
Externally publishedYes

Fingerprint

Cheek
Fibronectins
Ganglia
Neurons
Growth Cones
Immune Sera
Staining and Labeling
Pseudopodia
Neurites
Conditioned Culture Medium
Brain
arginyl-glycyl-aspartyl-serine
Cell Culture Techniques
Neuronal Outgrowth
Snails
Connective Tissue
Cultured Cells
Antigens
Peptides

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Fibronectin-like immunoreactivity in Helisoma buccal ganglia : evidence that an endogenous fibronectin-like molecule promotes neurite outgrowth. / Mattson, M. P.; Kater, S. B.

In: Journal of Neurobiology, Vol. 19, No. 3, 04.1988, p. 239-256.

Research output: Contribution to journalArticle

@article{3ada91a9dc9849fb8d29b0a3b1055cb0,
title = "Fibronectin-like immunoreactivity in Helisoma buccal ganglia: evidence that an endogenous fibronectin-like molecule promotes neurite outgrowth.",
abstract = "We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.",
author = "Mattson, {M. P.} and Kater, {S. B.}",
year = "1988",
month = "4",
language = "English (US)",
volume = "19",
pages = "239--256",
journal = "Developmental Neurobiology",
issn = "1932-8451",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

TY - JOUR

T1 - Fibronectin-like immunoreactivity in Helisoma buccal ganglia

T2 - evidence that an endogenous fibronectin-like molecule promotes neurite outgrowth.

AU - Mattson, M. P.

AU - Kater, S. B.

PY - 1988/4

Y1 - 1988/4

N2 - We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.

AB - We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.

UR - http://www.scopus.com/inward/record.url?scp=0023991913&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023991913&partnerID=8YFLogxK

M3 - Article

C2 - 3286820

AN - SCOPUS:0023991913

VL - 19

SP - 239

EP - 256

JO - Developmental Neurobiology

JF - Developmental Neurobiology

SN - 1932-8451

IS - 3

ER -