Fibroblast growth factor 21 is associated with increased serum total antioxidant capacity and oxidized lipoproteins in humans with different stages of chronic kidney disease

Gómez Sámano Miguel Ángel, Vargas Abonce Valerie Paola, Martínez Sánchez Froylan David, Palacios Báez Lucía, Vera Zertuche Juan Mauricio, Navarro Flores María Fernanda, Morales García Mariana Guadalupe, Fonseca Correa Jorge Ignacio, Zuarth Vázquez Julia María, Vega Vega Olynka, Correa Rotter Ricardo, Rincón Pedrero Rodolfo, Morales Buenrostro Luis E, Alberú Gómez Josefina, Ramírez González Julia Berenice, Pacheco Domínguez Reyna Lizette, López Cervantes Malaquías, Mendoza de la Garza María de los Ángeles, Baeza Arias Yolanda Victoria, Espinosa Cuevas ÁngelesLópez Carrasco Guadalupe, López Estrada Angelina, Guillén Pineda Luz Elizabeth, Gómez Pérez Francisco J, Cuevas Ramos Daniel

Research output: Contribution to journalArticlepeer-review


Background and aims: Oxidative stress (OS) induces the production of fibroblast growth factor 21 (FGF21). Previous data have revealed that FGF21 protects cells from OS injury and death, making it a potential therapeutic option for many diseases with increased OS. However, the association of this growth factor with OS markers in humans with chronic kidney disease (CKD) remains unknown. This study aims to evaluate the association of serum FGF21 with serum total antioxidant capacity (TAC) and oxidized low-density lipoproteins (OxLDL) in subjects in different stages of kidney disease. Methods: This is a cross-sectional study that included 382 subjects with different stages of CKD, irrespective of type 2 diabetes (T2D) diagnosis. Associations of serum FGF21 with OxLDL, TAC, sex, age, body mass index (BMI), fasting plasma glucose, estimated glomerular filtration rate (eGFR), T2D, and smoking, were evaluated through bivariate and partial correlation analyses. Independent associations of these variables with serum FGF21 were evaluated using multiple linear regression analysis. Results: Serum FGF21 was significantly and positively correlated with age (r = 0.236), TAC (lnTAC) (r = 0.217), and negatively correlated with eGFR (r = −0.429) and male sex (r = −0.102). After controlling by age, sex, BMI, T2D, smoking, and eGFR; both TAC and OxLDL were positively correlated with FGF21 (r = 0.117 and 0.158 respectively, p < 0.05). Using multiple linear regression analysis, eGFR, male sex, T2D, OxLDL, and TAC were independently associated with serum FGF21 (STDβ = −0.475, 0.162, −0.153, 0.142 and 0.136 respectively; p < 0.05 for all) adjusted for age, BMI, smoking, and fasting plasma glucose. Conclusion: A positive association between serum FGF21 and OS has been found independently of renal function in humans. Results from the present study provide novel information for deeper understanding of the role of FGF21 in OS in humans with CKD and T2D; mechanistic studies to explain the association of serum FGF21 with oxidative stress in CKD are needed.

Original languageEnglish (US)
JournalTherapeutic Advances in Endocrinology and Metabolism
StatePublished - 2021
Externally publishedYes


  • chronic kidney disease
  • fibroblast growth factor 21
  • glomerular filtration rate
  • oxidative stress
  • serum total antioxidant capacity

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism


Dive into the research topics of 'Fibroblast growth factor 21 is associated with increased serum total antioxidant capacity and oxidized lipoproteins in humans with different stages of chronic kidney disease'. Together they form a unique fingerprint.

Cite this