Feasibility and Safety of Transnasal High Flow Air to Reduce Core Body Temperature in Febrile Neurocritical Care Patients: A Pilot Study

Wendy C Ziai, Dhaval Shah, Fabrizio R. Assis, Harikrishna Tandri, Romergryko Geocadin

Research output: Contribution to journalArticle

Abstract

Background: Fever is an important determinant of prognosis following acute brain injury. Current non-pharmacologic techniques to reduce fever are limited and induce a shivering response. We investigated the safety and efficacy of a novel transnasal unidirectional high flow air device in reducing core body temperature in the neurocritical care unit (NCCU) setting. Methods: This pilot study included seven consecutive patients in the NCCU who were febrile (> 37.5 °C) for > 24 h despite standard non-pharmacologic and first-line antipyretic agents. Medical grade high flow air was delivered transnasally using a standard continuous positive airway pressure machine with a positive pressure of 20 cmH2O for 2 h. Core esophageal and tympanic temperature were continuously monitored. Results: Mean age was 40 ± 14 yo, and 72% (5/7 patients) were men. Five patients had intracerebral or intraventricular hemorrhage, one subject had transverse myelitis, and the remaining patient had anoxic brain injury due to a cardiac arrest. After 2 h of cooling, core temperature was significantly lower than the baseline pre-cooling temperature (37.3 ± 0.5 °C vs. 38.4 ± 0.6 °C; p < 0.002). Mean transnasal airflow rate was 57.5 ± 6.5 liters per minute. Five of the seven subjects were normothermic at the end of the 2-h period. One subject with severe hyperthermia (39.7 °C) and the other with multiple interruptions to therapy due to technical reasons did not cool. The core temperature within 30 min of cessation of airflow increased and was similar to the pre-cooling baseline temperature (38.3 ± 0.4 °C vs. 38.4 ± 0.6 °C, p = NS). Rate of core cooling was 0.6 ± 0.15 °C per hour at this flow rate. No shivering response was observed. No protocol-related adverse events occurred. Conclusions: High flow transnasal air in a unidirectional fashion lowers core body temperature in febrile patients in the NCCU setting. No adverse events were seen, and the process showed no signs of shivering or any other serious side effects during short-term exposure. This pilot study should inform further investigation.

Original languageEnglish (US)
JournalNeurocritical care
DOIs
StatePublished - Jan 1 2019

Fingerprint

Body Temperature
Patient Care
Shivering
Fever
Air
Safety
Temperature
Brain Injuries
Transverse Myelitis
Antipyretics
Continuous Positive Airway Pressure
Heart Arrest
Hemorrhage
Pressure
Equipment and Supplies
Therapeutics

Keywords

  • Fever
  • Neurocritical Care
  • Neuroprotection
  • Normothermia
  • Transnasal evaporative cooling

ASJC Scopus subject areas

  • Clinical Neurology
  • Critical Care and Intensive Care Medicine

Cite this

@article{4bbed3329649483ebd156de8fcc25f9f,
title = "Feasibility and Safety of Transnasal High Flow Air to Reduce Core Body Temperature in Febrile Neurocritical Care Patients: A Pilot Study",
abstract = "Background: Fever is an important determinant of prognosis following acute brain injury. Current non-pharmacologic techniques to reduce fever are limited and induce a shivering response. We investigated the safety and efficacy of a novel transnasal unidirectional high flow air device in reducing core body temperature in the neurocritical care unit (NCCU) setting. Methods: This pilot study included seven consecutive patients in the NCCU who were febrile (> 37.5 °C) for > 24 h despite standard non-pharmacologic and first-line antipyretic agents. Medical grade high flow air was delivered transnasally using a standard continuous positive airway pressure machine with a positive pressure of 20 cmH2O for 2 h. Core esophageal and tympanic temperature were continuously monitored. Results: Mean age was 40 ± 14 yo, and 72{\%} (5/7 patients) were men. Five patients had intracerebral or intraventricular hemorrhage, one subject had transverse myelitis, and the remaining patient had anoxic brain injury due to a cardiac arrest. After 2 h of cooling, core temperature was significantly lower than the baseline pre-cooling temperature (37.3 ± 0.5 °C vs. 38.4 ± 0.6 °C; p < 0.002). Mean transnasal airflow rate was 57.5 ± 6.5 liters per minute. Five of the seven subjects were normothermic at the end of the 2-h period. One subject with severe hyperthermia (39.7 °C) and the other with multiple interruptions to therapy due to technical reasons did not cool. The core temperature within 30 min of cessation of airflow increased and was similar to the pre-cooling baseline temperature (38.3 ± 0.4 °C vs. 38.4 ± 0.6 °C, p = NS). Rate of core cooling was 0.6 ± 0.15 °C per hour at this flow rate. No shivering response was observed. No protocol-related adverse events occurred. Conclusions: High flow transnasal air in a unidirectional fashion lowers core body temperature in febrile patients in the NCCU setting. No adverse events were seen, and the process showed no signs of shivering or any other serious side effects during short-term exposure. This pilot study should inform further investigation.",
keywords = "Fever, Neurocritical Care, Neuroprotection, Normothermia, Transnasal evaporative cooling",
author = "Ziai, {Wendy C} and Dhaval Shah and Assis, {Fabrizio R.} and Harikrishna Tandri and Romergryko Geocadin",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/s12028-019-00702-x",
language = "English (US)",
journal = "Neurocritical Care",
issn = "1541-6933",
publisher = "Humana Press",

}

TY - JOUR

T1 - Feasibility and Safety of Transnasal High Flow Air to Reduce Core Body Temperature in Febrile Neurocritical Care Patients

T2 - A Pilot Study

AU - Ziai, Wendy C

AU - Shah, Dhaval

AU - Assis, Fabrizio R.

AU - Tandri, Harikrishna

AU - Geocadin, Romergryko

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Background: Fever is an important determinant of prognosis following acute brain injury. Current non-pharmacologic techniques to reduce fever are limited and induce a shivering response. We investigated the safety and efficacy of a novel transnasal unidirectional high flow air device in reducing core body temperature in the neurocritical care unit (NCCU) setting. Methods: This pilot study included seven consecutive patients in the NCCU who were febrile (> 37.5 °C) for > 24 h despite standard non-pharmacologic and first-line antipyretic agents. Medical grade high flow air was delivered transnasally using a standard continuous positive airway pressure machine with a positive pressure of 20 cmH2O for 2 h. Core esophageal and tympanic temperature were continuously monitored. Results: Mean age was 40 ± 14 yo, and 72% (5/7 patients) were men. Five patients had intracerebral or intraventricular hemorrhage, one subject had transverse myelitis, and the remaining patient had anoxic brain injury due to a cardiac arrest. After 2 h of cooling, core temperature was significantly lower than the baseline pre-cooling temperature (37.3 ± 0.5 °C vs. 38.4 ± 0.6 °C; p < 0.002). Mean transnasal airflow rate was 57.5 ± 6.5 liters per minute. Five of the seven subjects were normothermic at the end of the 2-h period. One subject with severe hyperthermia (39.7 °C) and the other with multiple interruptions to therapy due to technical reasons did not cool. The core temperature within 30 min of cessation of airflow increased and was similar to the pre-cooling baseline temperature (38.3 ± 0.4 °C vs. 38.4 ± 0.6 °C, p = NS). Rate of core cooling was 0.6 ± 0.15 °C per hour at this flow rate. No shivering response was observed. No protocol-related adverse events occurred. Conclusions: High flow transnasal air in a unidirectional fashion lowers core body temperature in febrile patients in the NCCU setting. No adverse events were seen, and the process showed no signs of shivering or any other serious side effects during short-term exposure. This pilot study should inform further investigation.

AB - Background: Fever is an important determinant of prognosis following acute brain injury. Current non-pharmacologic techniques to reduce fever are limited and induce a shivering response. We investigated the safety and efficacy of a novel transnasal unidirectional high flow air device in reducing core body temperature in the neurocritical care unit (NCCU) setting. Methods: This pilot study included seven consecutive patients in the NCCU who were febrile (> 37.5 °C) for > 24 h despite standard non-pharmacologic and first-line antipyretic agents. Medical grade high flow air was delivered transnasally using a standard continuous positive airway pressure machine with a positive pressure of 20 cmH2O for 2 h. Core esophageal and tympanic temperature were continuously monitored. Results: Mean age was 40 ± 14 yo, and 72% (5/7 patients) were men. Five patients had intracerebral or intraventricular hemorrhage, one subject had transverse myelitis, and the remaining patient had anoxic brain injury due to a cardiac arrest. After 2 h of cooling, core temperature was significantly lower than the baseline pre-cooling temperature (37.3 ± 0.5 °C vs. 38.4 ± 0.6 °C; p < 0.002). Mean transnasal airflow rate was 57.5 ± 6.5 liters per minute. Five of the seven subjects were normothermic at the end of the 2-h period. One subject with severe hyperthermia (39.7 °C) and the other with multiple interruptions to therapy due to technical reasons did not cool. The core temperature within 30 min of cessation of airflow increased and was similar to the pre-cooling baseline temperature (38.3 ± 0.4 °C vs. 38.4 ± 0.6 °C, p = NS). Rate of core cooling was 0.6 ± 0.15 °C per hour at this flow rate. No shivering response was observed. No protocol-related adverse events occurred. Conclusions: High flow transnasal air in a unidirectional fashion lowers core body temperature in febrile patients in the NCCU setting. No adverse events were seen, and the process showed no signs of shivering or any other serious side effects during short-term exposure. This pilot study should inform further investigation.

KW - Fever

KW - Neurocritical Care

KW - Neuroprotection

KW - Normothermia

KW - Transnasal evaporative cooling

UR - http://www.scopus.com/inward/record.url?scp=85067842277&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067842277&partnerID=8YFLogxK

U2 - 10.1007/s12028-019-00702-x

DO - 10.1007/s12028-019-00702-x

M3 - Article

C2 - 30919302

AN - SCOPUS:85067842277

JO - Neurocritical Care

JF - Neurocritical Care

SN - 1541-6933

ER -