Extreme conformational diversity in human telomeric DNA

J. Y. Lee, Burak Okumus, D. S. Kim, Taekjip Ha

Research output: Contribution to journalArticle

Abstract

DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have used single-molecule spectroscopy to probe the dynamics of human telomeric DNA. Three conformations were observed in potassium solution, one unfolded and two folded, and each conformation could be further divided into two species, long-lived and short-lived, based on lifetimes of minutes vs. seconds. Vesicle encapsulation studies suggest that the total of six states detected here is intrinsic to the DNA. Folding was severely hindered by replacing a single guanine, showing only the short-lived species. The long-lived folded states are dominant in physiologically relevant conditions and probably correspond to the parallel and antiparallel G-quadruplexes seen in high-resolution structural studies. Although rare under these conditions, the short-lived species determine the overall dynamics because they bridge the different long-lived species. We propose that these previously unobserved transient states represent the early and late intermediates toward the formation of stable G-quadruplexes. The major compaction occurs between the early and late intermediates, and it is possible that local rearrangements are sufficient in locking the late intermediates into the stably folded forms. The extremely diverse conformations of the human telomeric DNA may have mechanistic implications for the proteins and drugs that recognize G-rich sequences.

Original languageEnglish (US)
Pages (from-to)18938-18943
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume102
Issue number52
DOIs
StatePublished - Dec 27 2005
Externally publishedYes

Fingerprint

G-Quadruplexes
DNA
Telomere
Guanine
Tandem Repeat Sequences
Single-Stranded DNA
Telomerase
Potassium
Pharmaceutical Preparations

Keywords

  • Fret
  • G-quadruplex
  • Single molecule
  • Telomere
  • Vesicle encapsulation

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

Extreme conformational diversity in human telomeric DNA. / Lee, J. Y.; Okumus, Burak; Kim, D. S.; Ha, Taekjip.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 52, 27.12.2005, p. 18938-18943.

Research output: Contribution to journalArticle

@article{330b4cbae75f41edb6b4c63d15e58681,
title = "Extreme conformational diversity in human telomeric DNA",
abstract = "DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have used single-molecule spectroscopy to probe the dynamics of human telomeric DNA. Three conformations were observed in potassium solution, one unfolded and two folded, and each conformation could be further divided into two species, long-lived and short-lived, based on lifetimes of minutes vs. seconds. Vesicle encapsulation studies suggest that the total of six states detected here is intrinsic to the DNA. Folding was severely hindered by replacing a single guanine, showing only the short-lived species. The long-lived folded states are dominant in physiologically relevant conditions and probably correspond to the parallel and antiparallel G-quadruplexes seen in high-resolution structural studies. Although rare under these conditions, the short-lived species determine the overall dynamics because they bridge the different long-lived species. We propose that these previously unobserved transient states represent the early and late intermediates toward the formation of stable G-quadruplexes. The major compaction occurs between the early and late intermediates, and it is possible that local rearrangements are sufficient in locking the late intermediates into the stably folded forms. The extremely diverse conformations of the human telomeric DNA may have mechanistic implications for the proteins and drugs that recognize G-rich sequences.",
keywords = "Fret, G-quadruplex, Single molecule, Telomere, Vesicle encapsulation",
author = "Lee, {J. Y.} and Burak Okumus and Kim, {D. S.} and Taekjip Ha",
year = "2005",
month = "12",
day = "27",
doi = "10.1073/pnas.0506144102",
language = "English (US)",
volume = "102",
pages = "18938--18943",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "52",

}

TY - JOUR

T1 - Extreme conformational diversity in human telomeric DNA

AU - Lee, J. Y.

AU - Okumus, Burak

AU - Kim, D. S.

AU - Ha, Taekjip

PY - 2005/12/27

Y1 - 2005/12/27

N2 - DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have used single-molecule spectroscopy to probe the dynamics of human telomeric DNA. Three conformations were observed in potassium solution, one unfolded and two folded, and each conformation could be further divided into two species, long-lived and short-lived, based on lifetimes of minutes vs. seconds. Vesicle encapsulation studies suggest that the total of six states detected here is intrinsic to the DNA. Folding was severely hindered by replacing a single guanine, showing only the short-lived species. The long-lived folded states are dominant in physiologically relevant conditions and probably correspond to the parallel and antiparallel G-quadruplexes seen in high-resolution structural studies. Although rare under these conditions, the short-lived species determine the overall dynamics because they bridge the different long-lived species. We propose that these previously unobserved transient states represent the early and late intermediates toward the formation of stable G-quadruplexes. The major compaction occurs between the early and late intermediates, and it is possible that local rearrangements are sufficient in locking the late intermediates into the stably folded forms. The extremely diverse conformations of the human telomeric DNA may have mechanistic implications for the proteins and drugs that recognize G-rich sequences.

AB - DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have used single-molecule spectroscopy to probe the dynamics of human telomeric DNA. Three conformations were observed in potassium solution, one unfolded and two folded, and each conformation could be further divided into two species, long-lived and short-lived, based on lifetimes of minutes vs. seconds. Vesicle encapsulation studies suggest that the total of six states detected here is intrinsic to the DNA. Folding was severely hindered by replacing a single guanine, showing only the short-lived species. The long-lived folded states are dominant in physiologically relevant conditions and probably correspond to the parallel and antiparallel G-quadruplexes seen in high-resolution structural studies. Although rare under these conditions, the short-lived species determine the overall dynamics because they bridge the different long-lived species. We propose that these previously unobserved transient states represent the early and late intermediates toward the formation of stable G-quadruplexes. The major compaction occurs between the early and late intermediates, and it is possible that local rearrangements are sufficient in locking the late intermediates into the stably folded forms. The extremely diverse conformations of the human telomeric DNA may have mechanistic implications for the proteins and drugs that recognize G-rich sequences.

KW - Fret

KW - G-quadruplex

KW - Single molecule

KW - Telomere

KW - Vesicle encapsulation

UR - http://www.scopus.com/inward/record.url?scp=30044448463&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=30044448463&partnerID=8YFLogxK

U2 - 10.1073/pnas.0506144102

DO - 10.1073/pnas.0506144102

M3 - Article

C2 - 16365301

AN - SCOPUS:30044448463

VL - 102

SP - 18938

EP - 18943

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 52

ER -