Expression of recombinant genes containing herpes simplex virus delayed-early and immediate-early regulatory regions and trans activation by herpesvirus infection

P. O'Hare, G. S. Hayward

Research output: Contribution to journalArticle

Abstract

The promoter-regulatory regions from the herpes simplex virus type 1 (HSV-1) gene for the immediate-early, 175,000-molecular-weight (175K) protein and the HSV-2 delayed-early gene for a 38K protein were linked to the readily assayable bacterial gene for the enzyme chloramphenicol acetyltransferase (CAT). Unexpectedly, in measurements of the constitutive expression of the recombinant genes 40 and 50 h after transfection of Vero cells, enzyme levels expressed from the delayed-early 38K-promoter-CAT construct (p38KCAT) were at least as high as those from the immediate-early 175K-promoter-CAT construct (p175KCAT). In contrast, enzyme levels expressed after transfection of a similar recombinant gene containing a second delayed-early promoter region, that of the HSV-1 thymidine kinase gene, were ca. 20-fold lower. The amounts of enzyme expressed from both p38KCAT and p175KCAT could be increased by up to 20- to 40-fold after infection of the transfected cells with HSV. In comparison, virus infection had no significant effect on enzyme levels expressed from recombinant CAT genes containing the simian virus 40 early promoter region, with or without the 72-base-pair enhancer element. Experiments with the temperature-sensitive mutants HSV-1 tsB7 and HSV-1 tsK indicate that induction of expression from p175KCAT was mediated by components of the infecting virus particle, whereas that from p38KCAT required de novo expression of virus immediate-early proteins. In addition, we show that functions required to induce expression from both p175KCAT and p38KCAT could also be provided by infection with pseudorabies virus and cytomegalovirus.

Original languageEnglish (US)
Pages (from-to)522-531
Number of pages10
JournalJournal of virology
Volume52
Issue number2
StatePublished - Dec 1 1984

    Fingerprint

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this