Expression of a Mycobacterium tuberculosis arabinomannan antigen in vitro and in vivo

J. R. Schwebach, A. Casadevall, R. Schneerson, Z. Dai, X. Wang, J. B. Robbins, A. Glatman-Freedman

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

The outermost layer of Mycobacterium tuberculosis contains two major polysaccharides, arabinomannan (AM) and glucan (GC). We studied the in vitro and in vivo expression of an M. tuberculosis AM antigen using monoclonal antibody (MAb) 9d8 (2a), an isotype-switched variant of the immunoglobulin G3 (IgG3) MAb 9d8. MAb 9d8 had been previously shown to bind M. tuberculosis AM and the M. tuberculosis surface. Our in vitro experiments showed that MAb 9d8(2a) bound strongly to whole-cell M. tuberculosis Erdman but not to the CDC 1551 strain grown in medium for an extended period. However, AM antigen was detected in the culture supernatant of both strains, and its concentration increased in a time-dependent manner. The detection of AM antigen from both strains was decreased in the presence of Tween 80. In mice infected with M. tuberculosis Erdman, AM antigen accumulated in organ homogenates concomitant to an increase in bacterial organ burden and an increase in IgG and IgM titer to AM. These results (i) indicate that the surface expression of AM during in vitro growth changes with culture age, is strain dependent, and is affected by the presence of Tween 80 in the culture media; (ii) show that AM is produced by bacteria growth in vivo; and (iii) demonstrate that the amount of in vivo-detected AM can be dependent on the number of bacteria in the infected organ.

Original languageEnglish (US)
Pages (from-to)5671-5678
Number of pages8
JournalInfection and immunity
Volume69
Issue number9
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Expression of a Mycobacterium tuberculosis arabinomannan antigen in vitro and in vivo'. Together they form a unique fingerprint.

Cite this