TY - JOUR
T1 - Exploring injury severity measures and in-hospital mortality
T2 - A multi-hospital study in Kenya
AU - Hung, Yuen W.
AU - He, Huan
AU - Mehmood, Amber
AU - Botchey, Isaac
AU - Saidi, Hassan
AU - Hyder, Adnan Ali
AU - Bachani, Abdulgafoor M.
PY - 2017/10
Y1 - 2017/10
N2 - Introduction Low- and middle-income countries (LMICs) have a disproportionately high burden of injuries. Most injury severity measures were developed in high-income settings and there have been limited studies on their application and validity in low-resource settings. In this study, we compared the performance of seven injury severity measures: estimated Injury Severity Score (eISS), Glasgow Coma Score (GCS), Mechanism, GCS, Age, Pressure score (MGAP), GCS, Age, Pressure score (GAP), Revised Trauma Score (RTS), Trauma and Injury Severity Score (TRISS) and Kampala Trauma Score (KTS), in predicting in-hospital mortality in a multi-hospital cohort of adult patients in Kenya. Methods This study was performed using data from trauma registries implemented in four public hospitals in Kenya. Estimated ISS, MGAP, GAP, RTS, TRISS and KTS were computed according to algorithms described in the literature. All seven measures were compared for discrimination by computing area under curve (AUC) for the receiver operating characteristics (ROC), model fit information using Akaike information criterion (AIC), and model calibration curves. Sensitivity analysis was conducted to include all trauma patients during the study period who had missing information on any of the injury severity measure(s) through multiple imputations. Results A total of 16,548 patients were included in the study. Complete data analysis included 14,762 (90.2%) patients for the seven injury severity measures. TRISS (complete case AUC: 0.889, 95% CI: 0.866–0.907) and KTS (complete case AUC: 0.873, 95% CI: 0.852–0.892) demonstrated similarly better discrimination measured by AUC on in-hospital deaths overall in both complete case analysis and multiple imputations. Estimated ISS had lower AUC (0.764, 95% CI: 0.736–0.787) than some injury severity measures. Calibration plots showed eISS and RTS had lower calibration than models from other injury severity measures. Conclusions This multi-hospital study in Kenya found statistical significant higher performance of KTS and TRISS than other injury severity measures. The KTS, is however, an easier score to compute as compared to the TRISS and has stable good performance across several hospital settings and robust to missing values. It is therefore a practical and robust option for use in low-resource settings, and is applicable to settings similar to Kenya.
AB - Introduction Low- and middle-income countries (LMICs) have a disproportionately high burden of injuries. Most injury severity measures were developed in high-income settings and there have been limited studies on their application and validity in low-resource settings. In this study, we compared the performance of seven injury severity measures: estimated Injury Severity Score (eISS), Glasgow Coma Score (GCS), Mechanism, GCS, Age, Pressure score (MGAP), GCS, Age, Pressure score (GAP), Revised Trauma Score (RTS), Trauma and Injury Severity Score (TRISS) and Kampala Trauma Score (KTS), in predicting in-hospital mortality in a multi-hospital cohort of adult patients in Kenya. Methods This study was performed using data from trauma registries implemented in four public hospitals in Kenya. Estimated ISS, MGAP, GAP, RTS, TRISS and KTS were computed according to algorithms described in the literature. All seven measures were compared for discrimination by computing area under curve (AUC) for the receiver operating characteristics (ROC), model fit information using Akaike information criterion (AIC), and model calibration curves. Sensitivity analysis was conducted to include all trauma patients during the study period who had missing information on any of the injury severity measure(s) through multiple imputations. Results A total of 16,548 patients were included in the study. Complete data analysis included 14,762 (90.2%) patients for the seven injury severity measures. TRISS (complete case AUC: 0.889, 95% CI: 0.866–0.907) and KTS (complete case AUC: 0.873, 95% CI: 0.852–0.892) demonstrated similarly better discrimination measured by AUC on in-hospital deaths overall in both complete case analysis and multiple imputations. Estimated ISS had lower AUC (0.764, 95% CI: 0.736–0.787) than some injury severity measures. Calibration plots showed eISS and RTS had lower calibration than models from other injury severity measures. Conclusions This multi-hospital study in Kenya found statistical significant higher performance of KTS and TRISS than other injury severity measures. The KTS, is however, an easier score to compute as compared to the TRISS and has stable good performance across several hospital settings and robust to missing values. It is therefore a practical and robust option for use in low-resource settings, and is applicable to settings similar to Kenya.
KW - Injury scores
KW - Injury severity measures
KW - Low- and middle-income countries
KW - Probability of death
KW - Trauma registry
KW - Validation
UR - http://www.scopus.com/inward/record.url?scp=85023637460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023637460&partnerID=8YFLogxK
U2 - 10.1016/j.injury.2017.07.001
DO - 10.1016/j.injury.2017.07.001
M3 - Article
C2 - 28716210
AN - SCOPUS:85023637460
VL - 48
SP - 2112
EP - 2118
JO - Injury
JF - Injury
SN - 0020-1383
IS - 10
ER -