Examining the association of lung cancer and highly correlated fibre size-specific asbestos exposures with a hierarchical Bayesian model

Ghassan B. Hamra, Dana Loomis, John Dement

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Background: Asbestos is a known carcinogen. However, little is known about the differential effects of size-specific asbestos fibres. Previous research has examined the relationship with lung cancer of each fibre group in the absence of others. Attempts to model all fibre groups within a single regression model have failed due to high correlations across fibre size groups. Methods: We compare results from frequentist models for individual fibre size groups, and a hierarchical Bayesian model that included all fibre groups to estimate the relationship of size-specific asbestos fibre groups to lung cancer mortality. The hierarchical model assumes partial exchangeability of the effects of size-specific asbestos fibre groups to lung cancer, and is capable of handling the strong correlation of the exposure data. Results: When fibre groups are modelled independently with a frequentist model, there appears to be an increase in the dose-response with increasing fibre size. However, when subject to a hierarchical structure, this trend vanishes, and the effects of distinct fibre groups appear largely similar. Conclusions: This is the first occasion where distinct asbestos fibre groups have been assessed in a single regression model; however, even the use of a hierarchical modelling structure does not appear to overcome all the statistical fluctuations arising from the high correlations across fibre groups. We believe these results should be compared with other occupational cohorts with similar fibre group information. Finally, results for the smallest fibre group may be suggestive of a carcinogenic potential for nanofibres.

Original languageEnglish (US)
Pages (from-to)353-357
Number of pages5
JournalOccupational and Environmental Medicine
Volume71
Issue number5
DOIs
StatePublished - May 2014
Externally publishedYes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Examining the association of lung cancer and highly correlated fibre size-specific asbestos exposures with a hierarchical Bayesian model'. Together they form a unique fingerprint.

Cite this