Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation

Yu Sun, Huai Li, Ying Liu, Mark P. Mattson, Mahendra S. Rao, Ming Zhan

Research output: Contribution to journalArticle

Abstract

Background: Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation. Methodology/Principal Findings: We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFβ and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs. Conclusions/Significance: Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a "road-map" for further experimental investigation.

Original languageEnglish (US)
Article numbere3406
JournalPLoS One
Volume3
Issue number10
DOIs
StatePublished - Oct 15 2008
Externally publishedYes

Fingerprint

embryonic stem cells
Embryonic Stem Cells
Stem cells
cell differentiation
Cell Differentiation
Genes
transcription factors
Forkhead Transcription Factors
activins
Activins
Critical Pathways
genes
Gene Regulatory Networks
response elements
Bioelectric potentials
phosphatidylinositol 3-kinase
Response Elements
Singular value decomposition
foxes
transcriptomics

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation. / Sun, Yu; Li, Huai; Liu, Ying; Mattson, Mark P.; Rao, Mahendra S.; Zhan, Ming.

In: PLoS One, Vol. 3, No. 10, e3406, 15.10.2008.

Research output: Contribution to journalArticle

Sun, Yu ; Li, Huai ; Liu, Ying ; Mattson, Mark P. ; Rao, Mahendra S. ; Zhan, Ming. / Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation. In: PLoS One. 2008 ; Vol. 3, No. 10.
@article{c93e0672edc24446a34cfd6a26764a63,
title = "Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation",
abstract = "Background: Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation. Methodology/Principal Findings: We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFβ and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs. Conclusions/Significance: Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a {"}road-map{"} for further experimental investigation.",
author = "Yu Sun and Huai Li and Ying Liu and Mattson, {Mark P.} and Rao, {Mahendra S.} and Ming Zhan",
year = "2008",
month = "10",
day = "15",
doi = "10.1371/journal.pone.0003406",
language = "English (US)",
volume = "3",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation

AU - Sun, Yu

AU - Li, Huai

AU - Liu, Ying

AU - Mattson, Mark P.

AU - Rao, Mahendra S.

AU - Zhan, Ming

PY - 2008/10/15

Y1 - 2008/10/15

N2 - Background: Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation. Methodology/Principal Findings: We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFβ and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs. Conclusions/Significance: Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a "road-map" for further experimental investigation.

AB - Background: Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation. Methodology/Principal Findings: We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFβ and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs. Conclusions/Significance: Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a "road-map" for further experimental investigation.

UR - http://www.scopus.com/inward/record.url?scp=54849416139&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54849416139&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0003406

DO - 10.1371/journal.pone.0003406

M3 - Article

C2 - 18923680

AN - SCOPUS:54849416139

VL - 3

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e3406

ER -