Evidence for gene-environment correlation in child feeding: Links between common genetic variation for BMI in children and parental feeding practices

Saskia Selzam, Tom A. McAdams, Jonathan R.I. Coleman, Susan Carnell, Paul F. O'Reilly, Robert Plomin, Clare H. Llewellyn

Research output: Contribution to journalArticle

Abstract

The parental feeding practices (PFPs) of excessive restriction of food intake ('restriction') and pressure to increase food consumption ('pressure') have been argued to causally influence child weight in opposite directions (high restriction causing overweight; high pressure causing underweight). However child weight could also 'elicit' PFPs. A novel approach is to investigate gene-environment correlation between child genetic influences on BMI and PFPs. Genome-wide polygenic scores (GPS) combining BMI-associated variants were created for 10,346 children (including 3,320 DZ twin pairs) from the Twins Early Development Study using results from an independent genome-wide association study meta-analysis. Parental 'restriction' and 'pressure' were assessed using the Child Feeding Questionnaire. Child BMI standard deviation scores (BMI-SDS) were calculated from children's height and weight at age 10. Linear regression and fixed family effect models were used to test between- (n = 4,445 individuals) and within-family (n = 2,164 DZ pairs) associations between the GPS and PFPs. In addition, we performed multivariate twin analyses (n = 4,375 twin pairs) to estimate the heritabilities of PFPs and the genetic correlations between BMI-SDS and PFPs. The GPS was correlated with BMI-SDS (β = 0.20, p = 2.41x10-38). Consistent with the gene-environment correlation hypothesis, child BMI GPS was positively associated with 'restriction' (β = 0.05, p = 4.19x10-4), and negatively associated with 'pressure' (β = -0.08, p = 2.70x10-7). These results remained consistent after controlling for parental BMI, and after controlling for overall family contributions (within-family analyses). Heritabilities for 'restriction' (43% [40-47%]) and 'pressure' (54% [50-59%]) were moderate-to-high. Twin-based genetic correlations were moderate and positive between BMI-SDS and 'restriction' (rA = 0.28 [0.23-0.32]), and substantial and negative between BMI-SDS and 'pressure' (rA = -0.48 [-0.52 - -0.44]. Results suggest that the degree to which parents limit or encourage children's food intake is partly influenced by children's genetic predispositions to higher or lower BMI. These findings point to an evocative gene-environment correlation in which heritable characteristics in the child elicit parental feeding behaviour.

Original languageEnglish (US)
Pages (from-to)e1007757
JournalPLoS Genetics
Volume14
Issue number11
DOIs
StatePublished - Nov 1 2018

Fingerprint

child nutrition
genetic variation
gene
Genes
Pressure
genes
genome
Genome
food intake
heritability
genetic correlation
Weights and Measures
Eating
parental behavior
underweight
Thinness
Genome-Wide Association Study
meta-analysis
food consumption
Feeding Behavior

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Cite this

Evidence for gene-environment correlation in child feeding : Links between common genetic variation for BMI in children and parental feeding practices. / Selzam, Saskia; McAdams, Tom A.; Coleman, Jonathan R.I.; Carnell, Susan; O'Reilly, Paul F.; Plomin, Robert; Llewellyn, Clare H.

In: PLoS Genetics, Vol. 14, No. 11, 01.11.2018, p. e1007757.

Research output: Contribution to journalArticle

Selzam, Saskia ; McAdams, Tom A. ; Coleman, Jonathan R.I. ; Carnell, Susan ; O'Reilly, Paul F. ; Plomin, Robert ; Llewellyn, Clare H. / Evidence for gene-environment correlation in child feeding : Links between common genetic variation for BMI in children and parental feeding practices. In: PLoS Genetics. 2018 ; Vol. 14, No. 11. pp. e1007757.
@article{356b40babe1e493e83676be96d9e9746,
title = "Evidence for gene-environment correlation in child feeding: Links between common genetic variation for BMI in children and parental feeding practices",
abstract = "The parental feeding practices (PFPs) of excessive restriction of food intake ('restriction') and pressure to increase food consumption ('pressure') have been argued to causally influence child weight in opposite directions (high restriction causing overweight; high pressure causing underweight). However child weight could also 'elicit' PFPs. A novel approach is to investigate gene-environment correlation between child genetic influences on BMI and PFPs. Genome-wide polygenic scores (GPS) combining BMI-associated variants were created for 10,346 children (including 3,320 DZ twin pairs) from the Twins Early Development Study using results from an independent genome-wide association study meta-analysis. Parental 'restriction' and 'pressure' were assessed using the Child Feeding Questionnaire. Child BMI standard deviation scores (BMI-SDS) were calculated from children's height and weight at age 10. Linear regression and fixed family effect models were used to test between- (n = 4,445 individuals) and within-family (n = 2,164 DZ pairs) associations between the GPS and PFPs. In addition, we performed multivariate twin analyses (n = 4,375 twin pairs) to estimate the heritabilities of PFPs and the genetic correlations between BMI-SDS and PFPs. The GPS was correlated with BMI-SDS (β = 0.20, p = 2.41x10-38). Consistent with the gene-environment correlation hypothesis, child BMI GPS was positively associated with 'restriction' (β = 0.05, p = 4.19x10-4), and negatively associated with 'pressure' (β = -0.08, p = 2.70x10-7). These results remained consistent after controlling for parental BMI, and after controlling for overall family contributions (within-family analyses). Heritabilities for 'restriction' (43{\%} [40-47{\%}]) and 'pressure' (54{\%} [50-59{\%}]) were moderate-to-high. Twin-based genetic correlations were moderate and positive between BMI-SDS and 'restriction' (rA = 0.28 [0.23-0.32]), and substantial and negative between BMI-SDS and 'pressure' (rA = -0.48 [-0.52 - -0.44]. Results suggest that the degree to which parents limit or encourage children's food intake is partly influenced by children's genetic predispositions to higher or lower BMI. These findings point to an evocative gene-environment correlation in which heritable characteristics in the child elicit parental feeding behaviour.",
author = "Saskia Selzam and McAdams, {Tom A.} and Coleman, {Jonathan R.I.} and Susan Carnell and O'Reilly, {Paul F.} and Robert Plomin and Llewellyn, {Clare H.}",
year = "2018",
month = "11",
day = "1",
doi = "10.1371/journal.pgen.1007757",
language = "English (US)",
volume = "14",
pages = "e1007757",
journal = "PLoS Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Evidence for gene-environment correlation in child feeding

T2 - Links between common genetic variation for BMI in children and parental feeding practices

AU - Selzam, Saskia

AU - McAdams, Tom A.

AU - Coleman, Jonathan R.I.

AU - Carnell, Susan

AU - O'Reilly, Paul F.

AU - Plomin, Robert

AU - Llewellyn, Clare H.

PY - 2018/11/1

Y1 - 2018/11/1

N2 - The parental feeding practices (PFPs) of excessive restriction of food intake ('restriction') and pressure to increase food consumption ('pressure') have been argued to causally influence child weight in opposite directions (high restriction causing overweight; high pressure causing underweight). However child weight could also 'elicit' PFPs. A novel approach is to investigate gene-environment correlation between child genetic influences on BMI and PFPs. Genome-wide polygenic scores (GPS) combining BMI-associated variants were created for 10,346 children (including 3,320 DZ twin pairs) from the Twins Early Development Study using results from an independent genome-wide association study meta-analysis. Parental 'restriction' and 'pressure' were assessed using the Child Feeding Questionnaire. Child BMI standard deviation scores (BMI-SDS) were calculated from children's height and weight at age 10. Linear regression and fixed family effect models were used to test between- (n = 4,445 individuals) and within-family (n = 2,164 DZ pairs) associations between the GPS and PFPs. In addition, we performed multivariate twin analyses (n = 4,375 twin pairs) to estimate the heritabilities of PFPs and the genetic correlations between BMI-SDS and PFPs. The GPS was correlated with BMI-SDS (β = 0.20, p = 2.41x10-38). Consistent with the gene-environment correlation hypothesis, child BMI GPS was positively associated with 'restriction' (β = 0.05, p = 4.19x10-4), and negatively associated with 'pressure' (β = -0.08, p = 2.70x10-7). These results remained consistent after controlling for parental BMI, and after controlling for overall family contributions (within-family analyses). Heritabilities for 'restriction' (43% [40-47%]) and 'pressure' (54% [50-59%]) were moderate-to-high. Twin-based genetic correlations were moderate and positive between BMI-SDS and 'restriction' (rA = 0.28 [0.23-0.32]), and substantial and negative between BMI-SDS and 'pressure' (rA = -0.48 [-0.52 - -0.44]. Results suggest that the degree to which parents limit or encourage children's food intake is partly influenced by children's genetic predispositions to higher or lower BMI. These findings point to an evocative gene-environment correlation in which heritable characteristics in the child elicit parental feeding behaviour.

AB - The parental feeding practices (PFPs) of excessive restriction of food intake ('restriction') and pressure to increase food consumption ('pressure') have been argued to causally influence child weight in opposite directions (high restriction causing overweight; high pressure causing underweight). However child weight could also 'elicit' PFPs. A novel approach is to investigate gene-environment correlation between child genetic influences on BMI and PFPs. Genome-wide polygenic scores (GPS) combining BMI-associated variants were created for 10,346 children (including 3,320 DZ twin pairs) from the Twins Early Development Study using results from an independent genome-wide association study meta-analysis. Parental 'restriction' and 'pressure' were assessed using the Child Feeding Questionnaire. Child BMI standard deviation scores (BMI-SDS) were calculated from children's height and weight at age 10. Linear regression and fixed family effect models were used to test between- (n = 4,445 individuals) and within-family (n = 2,164 DZ pairs) associations between the GPS and PFPs. In addition, we performed multivariate twin analyses (n = 4,375 twin pairs) to estimate the heritabilities of PFPs and the genetic correlations between BMI-SDS and PFPs. The GPS was correlated with BMI-SDS (β = 0.20, p = 2.41x10-38). Consistent with the gene-environment correlation hypothesis, child BMI GPS was positively associated with 'restriction' (β = 0.05, p = 4.19x10-4), and negatively associated with 'pressure' (β = -0.08, p = 2.70x10-7). These results remained consistent after controlling for parental BMI, and after controlling for overall family contributions (within-family analyses). Heritabilities for 'restriction' (43% [40-47%]) and 'pressure' (54% [50-59%]) were moderate-to-high. Twin-based genetic correlations were moderate and positive between BMI-SDS and 'restriction' (rA = 0.28 [0.23-0.32]), and substantial and negative between BMI-SDS and 'pressure' (rA = -0.48 [-0.52 - -0.44]. Results suggest that the degree to which parents limit or encourage children's food intake is partly influenced by children's genetic predispositions to higher or lower BMI. These findings point to an evocative gene-environment correlation in which heritable characteristics in the child elicit parental feeding behaviour.

UR - http://www.scopus.com/inward/record.url?scp=85056803199&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056803199&partnerID=8YFLogxK

U2 - 10.1371/journal.pgen.1007757

DO - 10.1371/journal.pgen.1007757

M3 - Article

C2 - 30457987

AN - SCOPUS:85056803199

VL - 14

SP - e1007757

JO - PLoS Genetics

JF - PLoS Genetics

SN - 1553-7390

IS - 11

ER -