Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21

Candace D. Middlebrooks, Nandita Mukhopadhyay, Stuart W. Tinker, Emily Graves Allen, Lora J.H. Bean, Ferdouse Begum, Reshmi Chowdhury, Vivian Cheung, Kimberly Doheny, Marcia Adams, Eleanor Feingold, Stephanie L. Sherman

Research output: Contribution to journalArticle

Abstract

In oocytes with nondisjoined chromosomes 21 due to a meiosis I (MI) error, recombination is significantly reduced along chromosome 21; several lines of evidence indicate that this contributes to the nondisjunction event. A pilot study found evidence that these oocytes also have reduced recombination genome-wide when compared with controls. This suggests that factors that act globally may be contributing to the reduced recombination on chromosome 21, and hence, the nondisjunction event. To identify the source of these factors, we examined two levels of recombination count regulation in oocytes: (i) regulation at the maternal level that leads to correlation in genome-wide recombination across her oocytes and (ii) regulation at the oocyte level that leads to correlation in recombination count among the chromosomes of an oocyte. We sought to determine whether either of these properties was altered in oocytes with an MI error. As it relates to maternal regulation, we found that both oocytes with an MI error (N=94) and their siblings (N=64) had reduced recombination when compared with controls (N=2723) At the oocyte level, we found that the correlation in recombination count among the chromosomes of an oocyte is reduced in oocytes with MI errors compared with that of their siblings or controls. These results suggest that regulation at the maternal level predisposes MI error oocytes to reduced levels of recombination, but additional oocyte-specific dysregulation contributes to the nondisjunction event.

Original languageEnglish (US)
Pages (from-to)408-417
Number of pages10
JournalHuman molecular genetics
Volume23
Issue number2
DOIs
StatePublished - Jan 2014

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Fingerprint Dive into the research topics of 'Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21'. Together they form a unique fingerprint.

  • Cite this

    Middlebrooks, C. D., Mukhopadhyay, N., Tinker, S. W., Allen, E. G., Bean, L. J. H., Begum, F., Chowdhury, R., Cheung, V., Doheny, K., Adams, M., Feingold, E., & Sherman, S. L. (2014). Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21. Human molecular genetics, 23(2), 408-417. https://doi.org/10.1093/hmg/ddt433