Evaluation of techniques for performing cellular isolation and preservation during microgravity conditions

Lindsay F. Rizzardi, Hawley Kunz, Kathleen Rubins, Alexander Chouker, Heather Quiriarte, Clarence Sams, Brian E. Crucian, Andrew P. Feinberg

Research output: Contribution to journalArticle

Abstract

Genomic and epigenomic studies require the precise transfer of microliter volumes among different types of tubes in order to purify DNA, RNA, or protein from biological samples and subsequently perform analyses of DNA methylation, RNA expression, and chromatin modifications on a genome-wide scale. Epigenomic and transcriptional analyses of human blood cells, for example, require separation of purified cell types to avoid confounding contributions of altered cellular proportions, and long-term preservation of these cells requires their isolation and transfer into appropriate freezing media. There are currently no protocols for these cellular isolation procedures on the International Space Station (ISS). Currently human blood samples are either frozen as mixed cell populations (within the CPT collection tubes) with poor yield of viable cells required for cell-type isolations, or returned under ambient conditions, which requires timing with Soyuz missions. Here we evaluate the feasibility of translating terrestrial cell purification techniques to the ISS. Our evaluations were performed in microgravity conditions during parabolic atmospheric flight. The pipetting of open liquids in microgravity was evaluated using analog-blood fluids and several types of pipette hardware. The best-performing pipettors were used to evaluate the pipetting steps required for peripheral blood mononuclear cell (PBMC) isolation following terrestrial density-gradient centrifugation. Evaluation of actual blood products was performed for both the overlay of diluted blood, and the transfer of isolated PBMCs. We also validated magnetic purification of cells. We found that positive-displacement pipettors avoided air bubbles, and the tips allowed the strong surface tension of water, glycerol, and blood to maintain a patent meniscus and withstand robust pipetting in microgravity. These procedures will greatly increase the breadth of research that can be performed on board the ISS, and allow improvised experimentation by astronauts on extraterrestrial missions.

Original languageEnglish (US)
Article number16025
Journalnpj Microgravity
Volume2
DOIs
StatePublished - Jan 7 2016

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Materials Science (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Agricultural and Biological Sciences (miscellaneous)
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Evaluation of techniques for performing cellular isolation and preservation during microgravity conditions'. Together they form a unique fingerprint.

  • Cite this