Evaluation of 68Ga-Glutamate Carboxypeptidase II Ligand Positron Emission Tomography for Clinical Molecular Imaging of Atherosclerotic Plaque Neovascularization

Thorsten Derlin, Johannes Thiele, Desiree Weiberg, James T. Thackeray, Klaus Püschel, Hans Jürgen Wester, Lukas Aguirre Dávila, Axel Larena-Avellaneda, Günter Daum, Frank M. Bengel, Udo Schumacher

Research output: Contribution to journalArticlepeer-review


Objective - Intraplaque neovascularization contributes to the progression and rupture of atherosclerotic lesions. Glutamate carboxypeptidase II (GCPII) is strongly expressed by endothelial cells of tumor neovasculature and plays a major role in hypoxia-induced neovascularization in rodent models of benign diseases. We hypothesized that GCPII expression may play a role in intraplaque neovascularization and may represent a target for imaging of atherosclerotic lesions. The aim of this study was to determine frequency, pattern, and clinical correlates of vessel wall uptake of a 68Ga-GCPII ligand for positron emission tomographic imaging. Approach and Results - Data from 150 patients undergoing 68Ga-GCPII ligand positron emission tomography were evaluated. Tracer uptake in various arterial segments was analyzed and was compared with calcified plaque burden, cardiovascular risk factors, and immunohistochemistry of carotid specimens. Focal arterial uptake of 68Ga-GCPII ligand was identified at 5776 sites in 99.3% of patients. The prevalence of uptake sites was highest in the thoracic aorta; 18.4% of lesions with tracer uptake were colocalized with calcified plaque. High injected dose (P=0.0005) and obesity (P=0.007) were significantly associated with 68Ga-GCPII ligand accumulation, but other cardiovascular risk factors showed no association. The number of 68Ga-GCPII ligand uptake sites was significantly associated with overweight condition (P=0.0154). Immunohistochemistry did not show GCPII expression. Autoradiographic blocking studies indicated nonspecific tracer binding. Conclusions - 68Ga-GCPII ligand positron emission tomography does not identify vascular lesions associated with atherosclerotic risk. Foci of tracer accumulation are likely caused by nonspecific tracer binding and are in part noise-related. Taken together, GCPII may not be a priority target for imaging of atherosclerotic lesions.

Original languageEnglish (US)
Pages (from-to)2213-2219
Number of pages7
JournalArteriosclerosis, thrombosis, and vascular biology
Issue number11
StatePublished - Nov 1 2016


  • PSMA
  • atherosclerosis
  • atherosclerotic plaque
  • physiologic neovascularization
  • positron-emission tomography

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Evaluation of <sup>68</sup>Ga-Glutamate Carboxypeptidase II Ligand Positron Emission Tomography for Clinical Molecular Imaging of Atherosclerotic Plaque Neovascularization'. Together they form a unique fingerprint.

Cite this