### Abstract

The availability of gated SPECT has increased the interest in the determination of volume and election fraction of the left ventricle (LV) for clinical diagnosis. However, the same indices for the right ventricle (RV) have been neglected. The objective of this investigation was to use a mathematical model of the anatomical distribution of activity in gated blood- pool imaging to evaluate the accuracy of two ventricular volume and ejection fraction determination methods. In this investigation, measurements from the RV were emphasized. Methods: The mathematical cardiac torso phantom, developed to study LV myocardium perfusion, was modified to simulate the radioactivity distribution of a (99m)Tc-gated blood-pool study. Twenty mathematical cardiac torso phantom models of the normal heart with different LV volumes (122.3 ± 11.0 ml), RV volumes (174.6 ± 22.3 ml) and stroke volumes (75.7 ± 3.3 ml) were randomly generated to simulate variations among patients. An analytical three-dimensional projector with attenuation and system response was used to generate SPECT projection sets, after which noise was added. The projections were simulated for 128 equidistant views in a 360°rotation mode. Results: The radius of rotation was varied between 24 and 28 cm to mimic such variation in patient acquisitions. The 180°and 360°projection sets were reconstructed using the filtered backprojection reconstruction algorithm with Butterworth filtering. Comparison was made with and without application of the iterative Chang attenuation correction algorithm. Volumes were calculated using a modified threshold and edge detection method (hybrid threshold), as well as a count-based method. A simple background correction procedure was used with both methods. Conclusion: Results indicate that cardiac functional parameters can be measured with reasonable accuracy using both methods. However, the count- based method had a larger bias than the hybrid threshold method when RV parameters were determined for 180°reconstruction without attenuation correction. This bias improved after attenuation correction. The count-based method also tended to overestimate the end systolic volume slightly. An improved background correction could possibly alleviate this bias.

Original language | English (US) |
---|---|

Pages (from-to) | 1528-1535 |

Number of pages | 8 |

Journal | Journal of Nuclear Medicine |

Volume | 38 |

Issue number | 10 |

State | Published - Oct 1997 |

### Keywords

- Ejection fraction
- Gated blood-pool imaging
- SPECT
- Ventricular volume

### ASJC Scopus subject areas

- Radiology Nuclear Medicine and imaging

## Fingerprint Dive into the research topics of 'Evaluation of right and left ventricular volume and ejection fraction using a mathematical cardiac torso phantom'. Together they form a unique fingerprint.

## Cite this

*Journal of Nuclear Medicine*,

*38*(10), 1528-1535.