Evaluation of an in vivo model for ventricular shunt infection: A pilot study using a novel antimicrobial-loaded polymer

Rajiv R. Iyer, Noah Gorelick, Karen Carroll, Ari M. Blitz, Sarah Beck, Caroline M. Garrett, Audrey Monroe, Betty Tyler, Sean T. Zuckerman, Jeffrey R. Capadona, Horst A. Von Recum, Mark G. Luciano

Research output: Contribution to journalArticlepeer-review

Abstract

OBJECTIVE Ventricular shunt infection remains an issue leading to high patient morbidity and cost, warranting further investigation. The authors sought to create an animal model of shunt infection that could be used to evaluate possible catheter modifications and innovations. METHODS Three dogs underwent bilateral ventricular catheter implantation and inoculation with methicillin-sensitive Staphylococcus aureus (S. aureus). In 2 experimental animals, the catheters were modified with a polymer containing chemical “pockets” loaded with vancomycin. In 1 control animal, the catheters were polymer coated but without antibiotics. Animals were monitored for 9 to 11 days, after which the shunts were explanted. MRI was performed after shunt implantation and prior to catheter harvest. The catheters were sonicated prior to microbiological culture and also evaluated by electron microscopy. The animals’ brains were evaluated for histopathology. RESULTS All animals underwent successful catheter implantation. The animals developed superficial wound infections, but no neurological deficits. Imaging demonstrated ventriculitis and cerebral edema. Harvested catheters from the control animal demonstrated > 104 colony-forming units (CFUs) of S. aureus. In the first experimental animal, one shunt demonstrated > 104 CFUs of S. aureus, but the other demonstrated no growth. In the second experimental animal, one catheter demonstrated no growth, and the other grew trace S. aureus. Brain histopathology revealed acute inflammation and ventriculitis in all animals, which was more severe in the control. CONCLUSIONS The authors evaluated an animal model of ventricular shunting and reliably induced features of shunt infection that could be microbiologically quantified. With this model, investigation of pathophysiological and imaging correlates of infection and potentially beneficial shunt catheter modifications is possible.

Original languageEnglish (US)
Pages (from-to)587-595
Number of pages9
JournalJournal of neurosurgery
Volume131
Issue number2
DOIs
StatePublished - 2019

Keywords

  • Antibiotics
  • Catheter
  • Coating
  • Cyclodextrin
  • Hydrocephalus
  • Infection
  • Polymer
  • Shunt
  • Staphylococcus aureus
  • Vancomycin
  • Ventriculitis

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Evaluation of an in vivo model for ventricular shunt infection: A pilot study using a novel antimicrobial-loaded polymer'. Together they form a unique fingerprint.

Cite this