Evaluation and Stability Analysis of Video-Based Navigation System for Functional Endoscopic Sinus Surgery on In-Vivo Clinical Data

Simon Leonard, Ayushi Sinha, Austin Reiter, Masaru Ishii, Gary L Gallia, Russell H Taylor, Gregory Hager

Research output: Contribution to journalArticle

Abstract

Functional Endoscopic Sinus Surgery (FESS) is one of the most common outpatient surgical procedures performed in the head and neck region. It is used to treat chronic sinusitis, a disease characterized by inflammation in the nose and surrounding paranasal sinuses, affecting about 15% of the adult population [1]. During FESS, the nasal cavity is visualized using an endoscope, and instruments are used to remove tissues that are often within a millimeter of critical anatomical structures such as the optic nerve, carotid arteries, and nasolacrimal ducts. To maintain orientation and to minimize the risk of damage to these structures, surgeons use surgical navigation systems to visualize the 3D position of their tools on patients’ preoperative CTs. This paper presents an image-based method for enhanced endoscopic navigation. The main contributions are: 1) a system that enables a surgeons to asynchronously register a sequence of endoscopic images to a CT scan with higher accuracy than other reported solutions using no additional hardware, 2) the ability to report the robustness of the registration, and 3) evaluation on in-vivo human data. The system also enables the overlay of anatomical structures, visible or occluded, on top of video images. The methods are validated on four different datasets using multiple evaluation metrics. First, for experiments on synthetic data, we observe a mean absolute position error of 0.21mm and a mean absolute orientation error of 2.8° compared to ground truth. Second, for phantom data, we observe a mean absolute position error of 0.97mm and a mean absolute orientation error of 3.6° compared to the same motion tracked by an electromagnetic tracker. Third, for cadaver data, we use fiducial landmarks and observe an average reprojection distance error of 0.82 mm. Finally, for in-vivo clinical data, we report an average ICP residual error of 0.88mm in areas that are not composed of erectile tissue and an average ICP residual error of 1.09mm in areas that are composed of erectile tissue.

Original languageEnglish (US)
JournalIEEE Transactions on Medical Imaging
DOIs
StateAccepted/In press - May 5 2018

    Fingerprint

Keywords

  • evaluation
  • ICP
  • in-vivo data
  • Navigation
  • stability analysis
  • structure from motion

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering

Cite this