Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in Quail

Jacques Balthazart, Charlotte A. Cornil, Thierry D. Charlier, Mélanie Taziaux, Gregory F. Ball

Research output: Contribution to journalArticlepeer-review

Abstract

In Japanese quail, estrogen's effects on sexual behavior can be divided into three classes based on the underlying mechanisms and time-course of action and release. During embryonic life, the embryonic ovary secretes large amounts of estrogens. In contrast to what is observed in mammals where sexual differentiation essentially proceeds via masculinization of the males, in quail, females are demasculinized by their endogenous ovarian estrogens, an effect that can be blocked by injection of an aromatase inhibitor and mimicked in male embryos by an injection of estradiol. In adulthood, testosterone secreted by the testes is converted into estrogens by the preoptic aromatase. Locally produced estrogens activate male sexual behavior largely through the activation of estrogen receptors resulting in the transcription of a variety of genes, including brain aromatase (genomic effect). Both changes in estrogen production and action are observed within latencies ranging from a few hours to a few days, and are completely reversible. Additionally, brain aromatase activity can be modulated within minutes by calcium-dependent phosphorylations, triggered by variations in glutamatergic neurotransmission. These rapid changes in aromatase activity affect with relatively short latencies (10-15 min) the expression of male sexual behavior in quail and also in mice. Overall, the effects of estrogens on sexual behavior can thus be categorized into three classes: organizational (irreversible genomic action during ontogeny), activational (reversible genomic action during adulthood) and rapid nongenomic effects. Rapid and slower changes in brain aromatase activity match well with the two modes of estrogen action on behavior and provide temporal variations in the estrogens' bioavailability that should be able to support the entire range of established effects for this steroid.

Original languageEnglish (US)
Pages (from-to)323-345
Number of pages23
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume311
Issue number5
DOIs
StatePublished - Jun 1 2009

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Animal Science and Zoology
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in Quail'. Together they form a unique fingerprint.

Cite this