Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data

Ken Sexton, Steven J. Mongin, John L. Adgate, Gregory C. Pratt, Gurumurthy Ramachandran, Thomas H. Stock, Maria T. Morandi

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


Repeated measures of personal exposure to 14 volatile organic compounds (VOC) were obtained over 3 seasons for 70 healthy, nonsmoking adults living in Minneapolis-St. Paul. Matched data were also available for participants' time-activity patterns, and measured VOC concentrations outdoors in the community and indoors in residences. A novel modeling approach employing hierarchical Bayesian techniques was used to estimate VOC concentrations (posterior mode) and variability (credible intervals) in five microenvironments: (1) indoors at home; (2) indoors at work/school; (3) indoors in other locations; (4) outdoors in any location; and (5) in transit. Estimated concentrations tended to be highest in "other" indoor microenvironments (e.g., grocery stores, restaurants, shopping malls), intermediate in the indoor work/school and residential microenvironments, and lowest in the outside and in-transit microenvironments. Model estimates for all 14 VOC were reasonable approximations of measured median concentrations in the indoor residential microenvironment. The largest predicted contributor to cumulative (2-day) personal exposure for all 14 VOC was the indoor residential environment. Model-based results suggest that indoors-at-work/school and indoors-at-other-location microenvironments were the second or third largest contributors for all VOC, while the outside-in-any-location and in-transit microenvironments appeared to contribute negligibly to cumulative personal exposure. Results from a mixed-effects model indicate that being in or near a garage increased personal exposure to o-xylene, m/p-xylene, benzene, ethylbenzene, and toluene, and leaving windows and doors at home open for 6 h or more decreased personal exposure to 13 of 14 VOC, all except trichloroethylene.

Original languageEnglish (US)
Pages (from-to)465-476
Number of pages12
JournalJournal of Toxicology and Environmental Health - Part A: Current Issues
Issue number5
StatePublished - Jan 2007
Externally publishedYes

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data'. Together they form a unique fingerprint.

Cite this