Erythropoiesis in vitro. Role of calcium

J. Misiti, Jerry L Spivak

Research output: Contribution to journalArticle

Abstract

The in vitro plasma clot technique was employed to examine the role of calcium during the interaction of erythropoietin and mouse erythroid progenitor cells. Erythropoietin-induced erythroid colony formation was increased 24% by the carboxylic ionophore A23187 (10 nM), whereas a 35% increase was produced by the carboxylic ionophore Ro 2-2985/1 (1 nM). EGTA (3 mM) inhibited erythropoietin-induced erythroid colony formation. Inhibition of erythroid colony formation by EGTA could be reversed by Ca2+, but not by Mn2+, Mg2+, Zn2+, or Fe2+. At least 30 min exposure of marrow cells to erythropoietin in vitro was required for production of erythroid colonies. EGTA substantially inhibited erythropoietin-induced erythroid colony formation even when the marrow cells were exposed to the hormone for up to 2 h before addition of the chelator. Marrow cells incubated first in calcium-free medium with erythropoietin and then cultured in the presence of calcium but not erythropoietin, failed to form erythroid colonies although colony formation occurred when erythropoietin was provided. Taken together, the data indicate that calcium is required for both extracellular and intracellular events during the interaction of erythropoietin with its target cells.

Original languageEnglish (US)
Pages (from-to)1573-1579
Number of pages7
JournalJournal of Clinical Investigation
Volume64
Issue number6
StatePublished - 1979

Fingerprint

Erythropoiesis
Erythropoietin
Calcium
Egtazic Acid
Bone Marrow
Ionophores
Lasalocid
In Vitro Techniques
Erythroid Precursor Cells
Calcimycin
Chelating Agents
Hormones

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Erythropoiesis in vitro. Role of calcium. / Misiti, J.; Spivak, Jerry L.

In: Journal of Clinical Investigation, Vol. 64, No. 6, 1979, p. 1573-1579.

Research output: Contribution to journalArticle

@article{aeb7c2e10d664444b1ca2a888fcb5345,
title = "Erythropoiesis in vitro. Role of calcium",
abstract = "The in vitro plasma clot technique was employed to examine the role of calcium during the interaction of erythropoietin and mouse erythroid progenitor cells. Erythropoietin-induced erythroid colony formation was increased 24{\%} by the carboxylic ionophore A23187 (10 nM), whereas a 35{\%} increase was produced by the carboxylic ionophore Ro 2-2985/1 (1 nM). EGTA (3 mM) inhibited erythropoietin-induced erythroid colony formation. Inhibition of erythroid colony formation by EGTA could be reversed by Ca2+, but not by Mn2+, Mg2+, Zn2+, or Fe2+. At least 30 min exposure of marrow cells to erythropoietin in vitro was required for production of erythroid colonies. EGTA substantially inhibited erythropoietin-induced erythroid colony formation even when the marrow cells were exposed to the hormone for up to 2 h before addition of the chelator. Marrow cells incubated first in calcium-free medium with erythropoietin and then cultured in the presence of calcium but not erythropoietin, failed to form erythroid colonies although colony formation occurred when erythropoietin was provided. Taken together, the data indicate that calcium is required for both extracellular and intracellular events during the interaction of erythropoietin with its target cells.",
author = "J. Misiti and Spivak, {Jerry L}",
year = "1979",
language = "English (US)",
volume = "64",
pages = "1573--1579",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "6",

}

TY - JOUR

T1 - Erythropoiesis in vitro. Role of calcium

AU - Misiti, J.

AU - Spivak, Jerry L

PY - 1979

Y1 - 1979

N2 - The in vitro plasma clot technique was employed to examine the role of calcium during the interaction of erythropoietin and mouse erythroid progenitor cells. Erythropoietin-induced erythroid colony formation was increased 24% by the carboxylic ionophore A23187 (10 nM), whereas a 35% increase was produced by the carboxylic ionophore Ro 2-2985/1 (1 nM). EGTA (3 mM) inhibited erythropoietin-induced erythroid colony formation. Inhibition of erythroid colony formation by EGTA could be reversed by Ca2+, but not by Mn2+, Mg2+, Zn2+, or Fe2+. At least 30 min exposure of marrow cells to erythropoietin in vitro was required for production of erythroid colonies. EGTA substantially inhibited erythropoietin-induced erythroid colony formation even when the marrow cells were exposed to the hormone for up to 2 h before addition of the chelator. Marrow cells incubated first in calcium-free medium with erythropoietin and then cultured in the presence of calcium but not erythropoietin, failed to form erythroid colonies although colony formation occurred when erythropoietin was provided. Taken together, the data indicate that calcium is required for both extracellular and intracellular events during the interaction of erythropoietin with its target cells.

AB - The in vitro plasma clot technique was employed to examine the role of calcium during the interaction of erythropoietin and mouse erythroid progenitor cells. Erythropoietin-induced erythroid colony formation was increased 24% by the carboxylic ionophore A23187 (10 nM), whereas a 35% increase was produced by the carboxylic ionophore Ro 2-2985/1 (1 nM). EGTA (3 mM) inhibited erythropoietin-induced erythroid colony formation. Inhibition of erythroid colony formation by EGTA could be reversed by Ca2+, but not by Mn2+, Mg2+, Zn2+, or Fe2+. At least 30 min exposure of marrow cells to erythropoietin in vitro was required for production of erythroid colonies. EGTA substantially inhibited erythropoietin-induced erythroid colony formation even when the marrow cells were exposed to the hormone for up to 2 h before addition of the chelator. Marrow cells incubated first in calcium-free medium with erythropoietin and then cultured in the presence of calcium but not erythropoietin, failed to form erythroid colonies although colony formation occurred when erythropoietin was provided. Taken together, the data indicate that calcium is required for both extracellular and intracellular events during the interaction of erythropoietin with its target cells.

UR - http://www.scopus.com/inward/record.url?scp=0018604450&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0018604450&partnerID=8YFLogxK

M3 - Article

C2 - 115902

AN - SCOPUS:0018604450

VL - 64

SP - 1573

EP - 1579

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 6

ER -