Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime

Jie Feng, Megan Weitner, Wanliang Shi, Shuo Zhang, Ying Zhang

Research output: Contribution to journalArticle

Abstract

Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10-20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third commonly used and most active antibiotic to treat Lyme disease, could replace cefoperazone (a drug no longer available in the US) in the daptomycin + doxycycline combination with complete eradication of the biofilm-like structures as shown by lack of any regrowth in subcultures. Our findings may have implications for improved treatment of Lyme disease.

Original languageEnglish (US)
Article number62
JournalFrontiers in Microbiology
Volume7
Issue numberFEB
DOIs
StatePublished - Feb 10 2016

Fingerprint

Daptomycin
Cefuroxime
Borrelia burgdorferi
Daunorubicin
Lyme Disease
Doxycycline
Mitomycin
Biofilms
cefuroxime axetil
Doxorubicin
Drug Combinations
Anti-Bacterial Agents
Pharmaceutical Preparations
Cefoperazone
Disease Vectors
Coloring Agents
Therapeutics

Keywords

  • Anti-persister activity
  • Biofilm
  • Borrelia burgdorferi
  • Drug combination
  • Persister

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this

@article{1007b720f1cd41edaf78578d010dc739,
title = "Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime",
abstract = "Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10-20{\%} of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third commonly used and most active antibiotic to treat Lyme disease, could replace cefoperazone (a drug no longer available in the US) in the daptomycin + doxycycline combination with complete eradication of the biofilm-like structures as shown by lack of any regrowth in subcultures. Our findings may have implications for improved treatment of Lyme disease.",
keywords = "Anti-persister activity, Biofilm, Borrelia burgdorferi, Drug combination, Persister",
author = "Jie Feng and Megan Weitner and Wanliang Shi and Shuo Zhang and Ying Zhang",
year = "2016",
month = "2",
day = "10",
doi = "10.3389/fmicb.2016.00062",
language = "English (US)",
volume = "7",
journal = "Frontiers in Microbiology",
issn = "1664-302X",
publisher = "Frontiers Media S. A.",
number = "FEB",

}

TY - JOUR

T1 - Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime

AU - Feng, Jie

AU - Weitner, Megan

AU - Shi, Wanliang

AU - Zhang, Shuo

AU - Zhang, Ying

PY - 2016/2/10

Y1 - 2016/2/10

N2 - Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10-20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third commonly used and most active antibiotic to treat Lyme disease, could replace cefoperazone (a drug no longer available in the US) in the daptomycin + doxycycline combination with complete eradication of the biofilm-like structures as shown by lack of any regrowth in subcultures. Our findings may have implications for improved treatment of Lyme disease.

AB - Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10-20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third commonly used and most active antibiotic to treat Lyme disease, could replace cefoperazone (a drug no longer available in the US) in the daptomycin + doxycycline combination with complete eradication of the biofilm-like structures as shown by lack of any regrowth in subcultures. Our findings may have implications for improved treatment of Lyme disease.

KW - Anti-persister activity

KW - Biofilm

KW - Borrelia burgdorferi

KW - Drug combination

KW - Persister

UR - http://www.scopus.com/inward/record.url?scp=84962129381&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84962129381&partnerID=8YFLogxK

U2 - 10.3389/fmicb.2016.00062

DO - 10.3389/fmicb.2016.00062

M3 - Article

C2 - 26903956

AN - SCOPUS:84962129381

VL - 7

JO - Frontiers in Microbiology

JF - Frontiers in Microbiology

SN - 1664-302X

IS - FEB

M1 - 62

ER -