Epigenetic regulation of protein phosphatase 2A (PP2A), lymphotactin (XCL1) and estrogen receptor alpha (ER) expression in human breast cancer cells

Judith C. Keen, Elizabeth Garrett-Mayer, Catherine Pettit, Kelly M. Mack, Jasper Manning, James G. Herman, Nancy E. Davidson

Research output: Contribution to journalArticle

Abstract

Absence of the estrogen receptor alpha (ER) in human breast cancer cells is an indicator of poor prognosis, and predictive of lack of response to hormonal therapy. Previous studies in our laboratory and others have shown that epigenetic regulation, including DNA methylation and histone deacetylation, are common mechanisms leading to ER gene silencing. Through the use of pharmacologic inhibitors, 5-aza 2′deoxycytidine (AZA) and Trichostatin A (TSA), we have shown that alterations in both of these mechanisms results in synergistic reexpression of ER mRNA and functional protein. These alterations may play a larger role in stimulation of cell signaling pathways leading to ER expression. We have utilized newly developed genome wide screening microarray techniques to identify gene(s) contributing to the hormone independent phenotype and AZA/TSA mediated ER expression. From this screen, we identified and confirmed expression of 4 candidate genes (PP2A, XCL1, THY1 and NBC4) as potential regulators of the hormone independent phenotype. Expression of two genes, XCL1 and PP2A, appeared to be correlated with ER expression. PP2A expression was not changed with ER degradation using ICI 182,780 whereas XCL1 expression decreased in the presence of AZA/TSA and ICI 182,780. This suggests that PP2A may be a determinant of ER expression while XCL1 appears to be ER responsive and downstream of ER expression. These gene products may be novel targets to be further explored in the development of new therapeutics for ER negative breast cancer.

Original languageEnglish (US)
Pages (from-to)1304-1312
Number of pages9
JournalCancer Biology and Therapy
Volume3
Issue number12
DOIs
StatePublished - Dec 2004

    Fingerprint

Keywords

  • 5-aza-2′-deoxycytidine
  • Breast cancer
  • DNA methylation
  • Epigenetic
  • Histone acetylation
  • Trichostatin A

ASJC Scopus subject areas

  • Molecular Medicine
  • Oncology
  • Pharmacology
  • Cancer Research

Cite this