Epigenetic dynamics of the infant immune system reveals a tumor necrosis factor superfamily signature in early human life

Research output: Contribution to journalArticlepeer-review

Abstract

DNA methylation (DNAm) is an essential mechanism governing normal development in humans. Although most DNAm patterns in blood cells are established in utero, the genes associated with immune function undergo postnatal DNAm modifications, and the characterization of this subset of genes is incomplete. Accordingly, we used available longitudinal DNAm datasets from a large birth cohort in the U.S. to further identify postnatal DNAm variation in peripheral leukocytes from 105 children (n = 105) between birth and the first two years of life, as determined by postnatal changes in β values (with the percentage of methylation ranging from 0 to 1.0 at individual CpG sites). Our study is an extension of a previous analysis performed by our group and identified that: (1) as previously described, DNAm patterns at most CpG sites were established before birth and only a small group of genes underwent DNAm modifications postnatally, (2) this subset includes multiple immune genes critical for lymphocyte development, and (3) several members of the tumor necrosis factor receptor and cytokine superfamilies with essential roles in immune cell activation, survival, and lymphoid tissue development were among those with a larger postnatal variation. This study describes the precise epigenetic DNA methylation marks in important immune genes that change postnatally and raises relevant questions about the role of DNAm during postnatal immune development in early childhood.

Original languageEnglish (US)
Article number12
JournalEpigenomes
Volume4
Issue number3
DOIs
StatePublished - Sep 2020

Keywords

  • Antibody production
  • DNA methylation
  • Early life
  • Immunology
  • Tumor necrosis factor cytokine superfamily

ASJC Scopus subject areas

  • Genetics
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Biochemistry
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Epigenetic dynamics of the infant immune system reveals a tumor necrosis factor superfamily signature in early human life'. Together they form a unique fingerprint.

Cite this