Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer

Tin Oo Khor, Francisco Fuentes, Limin Shu, Ximena Paredes-Gonzalez, Anne Yuqing Yang, Yue Liu, Dominic J. Smiraglia, Srinivasan Yegnasubramanian, William G. Nelson, Ah Ng Tony Kong

Research output: Contribution to journalArticlepeer-review


Epigenetic control of NRF2, a master regulator of many critical antioxidative stress defense genes in human prostate cancer (CaP), is unknown. Our previous animal study found decreased Nrf2 expression through promoter CpG methylation/histone modifications during prostate cancer progression in TRAMP mice. In this study, we evaluated CpG methylation of human NRF2 promoter in 27 clinical prostate cancer samples and in LNCaP cells using MAQMA analysis and bisulfite genomic DNA sequencing. Prostate cancer tissue microarray (TMA) containing normal and prostate cancer tissues was studied by immunohistochemistry. Luciferase reporter assay using specific human NRF2 DNA promoter segments and chromatin immunoprecipitation (ChIP) assay against histone modifying proteins were performed in LNCaP cells. Three specific CpG sites in the NRF2 promoter were found to be hypermethylated in clinical prostate cancer samples (BPH<ADT-RCaP<AS-CaP). NRF2 staining in human prostate cancer TMA showed a decreasing trend for both intensity and percentage of positive cells from normal tissues to advanced-stage prostate cancer (Gleason score from 3-9). Reporter assays in the LNCaP cells containing these three CpG sites showed methylation-inhibited transcriptional activity of the NRF2 promoter. LNCaP cells treated with 5-aza/TSA restored the expression of NRF2 and NRF2 downstream target genes, decreased expression levels of DNMT and HDAC proteins, and ChIP assays showed increased RNA Pol II and H3Ac with a concomitant decrease in H3K9me3, MBD2, and MeCP2 at CpG sites of human NRF2 promoter. Taken together, these findings suggest that epigenetic modification may contribute to the regulation of transcription activity of NRF2, which could be used as prevention and treatment target of human prostate cancer.

Original languageEnglish (US)
Pages (from-to)1186-1197
Number of pages12
Issue number6
StatePublished - Dec 1 2014

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine
  • Critical Care and Intensive Care Medicine
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer'. Together they form a unique fingerprint.

Cite this