Abstract
DNA is an emerging storage medium for digital data but its adoption is hampered by limitations of phosphoramidite chemistry, which was developed for single-base accuracy required for biological functionality. Here, we establish a de novo enzymatic DNA synthesis strategy designed from the bottom-up for information storage. We harness a template-independent DNA polymerase for controlled synthesis of sequences with user-defined information content. We demonstrate retrieval of 144-bits, including addressing, from perfectly synthesized DNA strands using batch-processed Illumina and real-time Oxford Nanopore sequencing. We then develop a codec for data retrieval from populations of diverse but imperfectly synthesized DNA strands, each with a ~30% error tolerance. With this codec, we experimentally validate a kilobyte-scale design which stores 1 bit per nucleotide. Simulations of the codec support reliable and robust storage of information for large-scale systems. This work paves the way for alternative synthesis and sequencing strategies to advance information storage in DNA.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Jun 16 2018 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)