Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS

Thomas J. O'Dell, Paul L. Huang, Ted M. Dawson, Jay L. Dinerman, Solomon H. Snyder, Eric R. Kandel, Mark C. Fishman

Research output: Contribution to journalArticlepeer-review

357 Scopus citations

Abstract

Long-term potentiation (LTP) is a persistent increase in synaptic strength implicated in certain forms of learning and memory. In the CA1 region of the hippocampus, LTP is thought to involve the release of one or more retrograde messengers from the postsynaptic cell that act on the presynaptic terminal to enhance transmitter release. One candidate retrograde messenger is the membrane-permeant gas nitric oxide (NO), which in the brain is released after activation of the neuronal-specific NO synthase isoform (nNOS). To assess the importance of NO in hippocampal synaptic plasticity, LTP was examined in mice where the gene encoding nNOS was disrupted by gene targeting. In nNOS - mice, LTP induced by weak intensity tetanic stimulation was normal except for a slight reduction in comparison to that in wild-type mice and was blocked by NOS inhibitors, just as it was in wild-type mice. Immunocytochemical studies indicate that in the nNOS- mice as in wild-type mice, the endothelial form of NOS (eNOS) is expressed in CA1 neurons. These findings suggest that eNOS, rather than nNOS, generates NO within the postsynaptic cell during LTP.

Original languageEnglish (US)
Pages (from-to)542-546
Number of pages5
JournalScience
Volume265
Issue number5171
DOIs
StatePublished - 1994

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS'. Together they form a unique fingerprint.

Cite this