Enabling technologies for natural orifice transluminal endoscopic surgery (N.O.T.E.S) using robotically guided elasticity imaging

H. T. Şen, Nishikant Deshmukh, Roger Goldman, Peter Kazanzides, Russell H. Taylor, Emad Boctor, Nabil Simaan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Natural orifice transluminal endoscopic surgery (N.O.T.E.S) is a minimally invasive surgical technique that could benefit greatly from additional methods for intraoperative detection of tissue malignancies (using elastography) along with more precise control of surgical tools. Ultrasound elastography has proven itself as an invaluable imaging modality. However, elasticity images typically suffer from low contrast when imaging organs from the surface of the body. In addition, the palpation motions needed to generate elastography images useful for identifying clinically significant changes in tissue properties are difficult to produce because they require precise axial displacements along the imaging plane. Improvements in elasticity imaging necessitate an approach that simultaneously removes the need for imaging from the body surface while providing more precise palpation motions. As a first step toward performing N.O.T.E.S in-vivo, we integrated a phased ultrasonic micro-array with a flexible snake-like robot. The integrated system is used to create elastography images of a spherical isoechoic lesion (approximately 5mm in cross-section) in a tissue-mimicking phantom. Images are obtained by performing robotic palpation of the phantom at the location of the lesion.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2012
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
DOIs
StatePublished - 2012
EventMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, CA, United States
Duration: Feb 5 2012Feb 7 2012

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8316
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CitySan Diego, CA
Period2/5/122/7/12

Keywords

  • Interstitial imaging
  • N.O.T.E.S
  • elasticity imaging
  • image-guided intervention
  • single-port surgery
  • ultrasonic micro-array

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Enabling technologies for natural orifice transluminal endoscopic surgery (N.O.T.E.S) using robotically guided elasticity imaging'. Together they form a unique fingerprint.

Cite this