Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X

Research output: Contribution to journalArticlepeer-review

Abstract

To compensate for the sex difference in the number of X chromosomes, human females, like human males have only one active X. The other X chromosomes in cells of both sexes are silenced in utero by XIST, the Inactive X Specific Transcript gene, that is present on all X chromosomes. To investigate the means by which the human active X is protected from silencing by XIST, we updated the search for a key dosage sensitive XIST repressor using new cytogenetic data with more precise resolution. Here, based on a previously unknown sex bias in copy number variations, we identify a unique region in our genome, and propose candidate genes that lie within, as they could inactivate XIST. Unlike males, the females who duplicate this region of chromosome 19 (partial 19 trisomy) do not survive embryogenesis; this preimplantation loss of females may be one reason that more human males are born than females.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Mar 22 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X'. Together they form a unique fingerprint.

Cite this