Electrocorticographic decoding of ipsilateral reach in the setting of contralateral arm weakness from a cortical lesion.

Research output: Contribution to journalArticle

Abstract

Brain machine interfaces have the potential for restoring motor function not only in patients with amputations or lesions of efferent pathways in the spinal cord and peripheral nerves, but also patients with acquired brain lesions such as strokes and tumors. In these patients the most efficient components of cortical motor systems are not available for BMI control. Here we had the opportunity to investigate the possibility of utilizing subdural electrocorticographic (ECoG) signals to control natural reaching movements under these circumstances. In a subject with a left arm monoparesis following resection of a recurrent glioma, we found that ECoG signals recorded in remaining cortex were sufficient for decoding kinematics of natural reach movements of the nonparetic arm, ipsilateral to the ECoG recordings. The relationship between the subject's ECoG signals and reach trajectory in three dimensions, two of which were highly correlated, was captured with a computationally simple linear model (mean Pearson's r in depth dimension= 0.68, in height= 0.73, in lateral= 0.24). These results were attained with only a small subset of 7 temporal/spectral neural signal features. The small subset of neural features necessary to attain high decoding results show promise for a restorative BMI controlled solely by ipsilateral ECoG signals.

Fingerprint

Decoding
Brain
Brain-Computer Interfaces
Efferent Pathways
Tumors
Spinal Nerves
Kinematics
Trajectories
Paresis
Peripheral Nerves
Amputation
Biomechanical Phenomena
Glioma
Linear Models
Spinal Cord
Stroke
Neoplasms

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{8ac73d77f0dc4966b4d2d1f112823455,
title = "Electrocorticographic decoding of ipsilateral reach in the setting of contralateral arm weakness from a cortical lesion.",
abstract = "Brain machine interfaces have the potential for restoring motor function not only in patients with amputations or lesions of efferent pathways in the spinal cord and peripheral nerves, but also patients with acquired brain lesions such as strokes and tumors. In these patients the most efficient components of cortical motor systems are not available for BMI control. Here we had the opportunity to investigate the possibility of utilizing subdural electrocorticographic (ECoG) signals to control natural reaching movements under these circumstances. In a subject with a left arm monoparesis following resection of a recurrent glioma, we found that ECoG signals recorded in remaining cortex were sufficient for decoding kinematics of natural reach movements of the nonparetic arm, ipsilateral to the ECoG recordings. The relationship between the subject's ECoG signals and reach trajectory in three dimensions, two of which were highly correlated, was captured with a computationally simple linear model (mean Pearson's r in depth dimension= 0.68, in height= 0.73, in lateral= 0.24). These results were attained with only a small subset of 7 temporal/spectral neural signal features. The small subset of neural features necessary to attain high decoding results show promise for a restorative BMI controlled solely by ipsilateral ECoG signals.",
author = "Guy Hotson and Fifer, {Matthew S.} and Soumyadipta Acharya and Anderson, {William S} and Thakor, {Nitish V} and Crone, {Nathan E}",
year = "2012",
language = "English (US)",
volume = "2012",
pages = "4104--4107",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Electrocorticographic decoding of ipsilateral reach in the setting of contralateral arm weakness from a cortical lesion.

AU - Hotson, Guy

AU - Fifer, Matthew S.

AU - Acharya, Soumyadipta

AU - Anderson, William S

AU - Thakor, Nitish V

AU - Crone, Nathan E

PY - 2012

Y1 - 2012

N2 - Brain machine interfaces have the potential for restoring motor function not only in patients with amputations or lesions of efferent pathways in the spinal cord and peripheral nerves, but also patients with acquired brain lesions such as strokes and tumors. In these patients the most efficient components of cortical motor systems are not available for BMI control. Here we had the opportunity to investigate the possibility of utilizing subdural electrocorticographic (ECoG) signals to control natural reaching movements under these circumstances. In a subject with a left arm monoparesis following resection of a recurrent glioma, we found that ECoG signals recorded in remaining cortex were sufficient for decoding kinematics of natural reach movements of the nonparetic arm, ipsilateral to the ECoG recordings. The relationship between the subject's ECoG signals and reach trajectory in three dimensions, two of which were highly correlated, was captured with a computationally simple linear model (mean Pearson's r in depth dimension= 0.68, in height= 0.73, in lateral= 0.24). These results were attained with only a small subset of 7 temporal/spectral neural signal features. The small subset of neural features necessary to attain high decoding results show promise for a restorative BMI controlled solely by ipsilateral ECoG signals.

AB - Brain machine interfaces have the potential for restoring motor function not only in patients with amputations or lesions of efferent pathways in the spinal cord and peripheral nerves, but also patients with acquired brain lesions such as strokes and tumors. In these patients the most efficient components of cortical motor systems are not available for BMI control. Here we had the opportunity to investigate the possibility of utilizing subdural electrocorticographic (ECoG) signals to control natural reaching movements under these circumstances. In a subject with a left arm monoparesis following resection of a recurrent glioma, we found that ECoG signals recorded in remaining cortex were sufficient for decoding kinematics of natural reach movements of the nonparetic arm, ipsilateral to the ECoG recordings. The relationship between the subject's ECoG signals and reach trajectory in three dimensions, two of which were highly correlated, was captured with a computationally simple linear model (mean Pearson's r in depth dimension= 0.68, in height= 0.73, in lateral= 0.24). These results were attained with only a small subset of 7 temporal/spectral neural signal features. The small subset of neural features necessary to attain high decoding results show promise for a restorative BMI controlled solely by ipsilateral ECoG signals.

UR - http://www.scopus.com/inward/record.url?scp=84880951844&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880951844&partnerID=8YFLogxK

M3 - Article

C2 - 23366830

AN - SCOPUS:84880951844

VL - 2012

SP - 4104

EP - 4107

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -