Eigenvector centrality reveals the time course of task-specific electrode connectivity in human ECoG

Geoffrey Newman, Matt Fifer, Heather Benz, Nathan Crone, Nitish Thakor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Connectivity measures provide a quantification of information flow across electrodes in human subject electrocorticography (ECoG). They do not, however, lend themselves to direct interpretation due to the combinatorial size increase of the feature space. We utilize time-varying dynamic Bayesian networks (TV-DBN) as a model of the individual ECoG electrode activity based on the activation of the electrode array. Using the high gamma power TV-DBN connectivity matrices, we determine if eigenvector centrality can objectively highlight the important interactions between electrodes. The statistically thresholded centrality measure reveals task-related differences in the significant electrode subsets during distinct task phases (p<0.05; 13 significant electrodes overall: 2 exclusive to the cue processing phase, 3 exclusive to the motor output phase). These results suggest that TV-DBN and centrality analysis can be used in an online brain-mapping system to show regions of the brain relevant to real-time task performance.

Original languageEnglish (US)
Title of host publication2015 7th International IEEE/EMBS Conference on Neural Engineering, NER 2015
PublisherIEEE Computer Society
Pages336-339
Number of pages4
ISBN (Electronic)9781467363891
DOIs
StatePublished - Jul 1 2015
Event7th International IEEE/EMBS Conference on Neural Engineering, NER 2015 - Montpellier, France
Duration: Apr 22 2015Apr 24 2015

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
Volume2015-July
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Other

Other7th International IEEE/EMBS Conference on Neural Engineering, NER 2015
Country/TerritoryFrance
CityMontpellier
Period4/22/154/24/15

ASJC Scopus subject areas

  • Artificial Intelligence
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Eigenvector centrality reveals the time course of task-specific electrode connectivity in human ECoG'. Together they form a unique fingerprint.

Cite this