Efficient test for nonlinear dependence of two continuous variables

Yi Wang, Yi Li, Hongbao Cao, Momiao Xiong, Yin Yao Shugart, Li Jin

Research output: Contribution to journalArticle


Background: Testing dependence/correlation of two variables is one of the fundamental tasks in statistics. In this work, we proposed a new way of testing nonlinear dependence between two continuous variables (X and Y). Results: We addressed this research question by using CANOVA (continuous analysis of variance, software available at https://sourceforge.net/projects/canova/ ). In the CANOVA framework, we first defined a neighborhood for each data point related to its X value, and then calculated the variance of the Y value within the neighborhood. Finally, we performed permutations to evaluate the significance of the observed values within the neighborhood variance. To evaluate the strength of CANOVA compared to six other methods, we performed extensive simulations to explore the relationship between methods and compared the false positive rates and statistical power using both simulated and real datasets (kidney cancer RNA-seq dataset). Conclusions: We concluded that CANOVA is an efficient method for testing nonlinear correlation with several advantages in real data applications.

Original languageEnglish (US)
Article number260
JournalBMC Bioinformatics
Issue number1
StatePublished - Aug 19 2015
Externally publishedYes


  • Kidney cancer
  • Linear/nonlinear correlation
  • Neighborhood
  • Power

ASJC Scopus subject areas

  • Applied Mathematics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Efficient test for nonlinear dependence of two continuous variables'. Together they form a unique fingerprint.

  • Cite this

    Wang, Y., Li, Y., Cao, H., Xiong, M., Shugart, Y. Y., & Jin, L. (2015). Efficient test for nonlinear dependence of two continuous variables. BMC Bioinformatics, 16(1), [260]. https://doi.org/10.1186/s12859-015-0697-7