Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins.

Paul A Watkins, J. Moss, M. Vaughan

Research output: Contribution to journalArticle

Abstract

Choleragen-dependent ADP ribosylation of soluble proteins from bovine thymus, using [32P]NAD as substrate, was increased 3- to 4-fold by GTP. The effect was specific for nucleoside triphosphate, with GTP approximately equal to ITP greater than CTP greater than ATP greater than UTP. Half-maximal enhancement was observed with 0.5 mM GTP. The magnitude of the GTP effect decreased with increasing NAD concentration; GTP had no effect on hydrolysis of NAD at low NAD concentrations. Digestion of ADP-ribosylated proteins with snake venom phosphodiesterase yielded primarily 5'-AMP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins from thymus after incubation with choleragen and [32P]NAD separated numerous ADP-ribosylated proteins; radioactivity in all bands was increased by nucleoside triphosphate. Choleragen catalyzed the ADP ribosylation of several purified proteins; depending on the protein, GTP either increased, decreased, or had no effect on the extent of ADP ribosylation. Choleragen-dependent ADP ribosylation of a wide variety of proteins is consistent with the possibility that intoxication results in covalent modification of more than one cellular protein and perhaps alters the activity of other enzymes in addition to adenylate cyclase.

Original languageEnglish (US)
Pages (from-to)3959-3963
Number of pages5
JournalJournal of Biological Chemistry
Volume255
Issue number9
StatePublished - May 10 1980
Externally publishedYes

Fingerprint

Cholera Toxin
Guanosine Triphosphate
Adenosine Diphosphate
Membrane Proteins
Membranes
NAD
Proteins
Thymus
Nucleosides
Thymus Gland
Inosine Triphosphate
Cytidine Triphosphate
Uridine Triphosphate
Radioactivity
Adenosine Monophosphate
Electrophoresis
Adenylyl Cyclases
Sodium Dodecyl Sulfate
Polyacrylamide Gel Electrophoresis
Digestion

ASJC Scopus subject areas

  • Biochemistry

Cite this

Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins. / Watkins, Paul A; Moss, J.; Vaughan, M.

In: Journal of Biological Chemistry, Vol. 255, No. 9, 10.05.1980, p. 3959-3963.

Research output: Contribution to journalArticle

@article{0348351926514e06b098365604acd240,
title = "Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins.",
abstract = "Choleragen-dependent ADP ribosylation of soluble proteins from bovine thymus, using [32P]NAD as substrate, was increased 3- to 4-fold by GTP. The effect was specific for nucleoside triphosphate, with GTP approximately equal to ITP greater than CTP greater than ATP greater than UTP. Half-maximal enhancement was observed with 0.5 mM GTP. The magnitude of the GTP effect decreased with increasing NAD concentration; GTP had no effect on hydrolysis of NAD at low NAD concentrations. Digestion of ADP-ribosylated proteins with snake venom phosphodiesterase yielded primarily 5'-AMP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins from thymus after incubation with choleragen and [32P]NAD separated numerous ADP-ribosylated proteins; radioactivity in all bands was increased by nucleoside triphosphate. Choleragen catalyzed the ADP ribosylation of several purified proteins; depending on the protein, GTP either increased, decreased, or had no effect on the extent of ADP ribosylation. Choleragen-dependent ADP ribosylation of a wide variety of proteins is consistent with the possibility that intoxication results in covalent modification of more than one cellular protein and perhaps alters the activity of other enzymes in addition to adenylate cyclase.",
author = "Watkins, {Paul A} and J. Moss and M. Vaughan",
year = "1980",
month = "5",
day = "10",
language = "English (US)",
volume = "255",
pages = "3959--3963",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "9",

}

TY - JOUR

T1 - Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins.

AU - Watkins, Paul A

AU - Moss, J.

AU - Vaughan, M.

PY - 1980/5/10

Y1 - 1980/5/10

N2 - Choleragen-dependent ADP ribosylation of soluble proteins from bovine thymus, using [32P]NAD as substrate, was increased 3- to 4-fold by GTP. The effect was specific for nucleoside triphosphate, with GTP approximately equal to ITP greater than CTP greater than ATP greater than UTP. Half-maximal enhancement was observed with 0.5 mM GTP. The magnitude of the GTP effect decreased with increasing NAD concentration; GTP had no effect on hydrolysis of NAD at low NAD concentrations. Digestion of ADP-ribosylated proteins with snake venom phosphodiesterase yielded primarily 5'-AMP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins from thymus after incubation with choleragen and [32P]NAD separated numerous ADP-ribosylated proteins; radioactivity in all bands was increased by nucleoside triphosphate. Choleragen catalyzed the ADP ribosylation of several purified proteins; depending on the protein, GTP either increased, decreased, or had no effect on the extent of ADP ribosylation. Choleragen-dependent ADP ribosylation of a wide variety of proteins is consistent with the possibility that intoxication results in covalent modification of more than one cellular protein and perhaps alters the activity of other enzymes in addition to adenylate cyclase.

AB - Choleragen-dependent ADP ribosylation of soluble proteins from bovine thymus, using [32P]NAD as substrate, was increased 3- to 4-fold by GTP. The effect was specific for nucleoside triphosphate, with GTP approximately equal to ITP greater than CTP greater than ATP greater than UTP. Half-maximal enhancement was observed with 0.5 mM GTP. The magnitude of the GTP effect decreased with increasing NAD concentration; GTP had no effect on hydrolysis of NAD at low NAD concentrations. Digestion of ADP-ribosylated proteins with snake venom phosphodiesterase yielded primarily 5'-AMP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins from thymus after incubation with choleragen and [32P]NAD separated numerous ADP-ribosylated proteins; radioactivity in all bands was increased by nucleoside triphosphate. Choleragen catalyzed the ADP ribosylation of several purified proteins; depending on the protein, GTP either increased, decreased, or had no effect on the extent of ADP ribosylation. Choleragen-dependent ADP ribosylation of a wide variety of proteins is consistent with the possibility that intoxication results in covalent modification of more than one cellular protein and perhaps alters the activity of other enzymes in addition to adenylate cyclase.

UR - http://www.scopus.com/inward/record.url?scp=0019321014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0019321014&partnerID=8YFLogxK

M3 - Article

C2 - 6246110

AN - SCOPUS:0019321014

VL - 255

SP - 3959

EP - 3963

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 9

ER -