Effects of abdominal pressure on venous return

Abdominal vascular zone conditions

M. Takata, Robert A Wise, J. L. Robotham

Research output: Contribution to journalArticle

Abstract

The effects of changes in abdominal pressure (Pab) on inferior vena cava (IVC) venous return were analyzed using a model of the IVC circulation based on a concept of abdominal vascular zone conditions analogous to pulmonary vascular zone conditions. We hypothesized that an increase in Pab would increase IVC venous return when the IVC pressure at the level of the diaphragm (Pivc) exceeds the sum of Pab and the critical closing transmural pressure (Pc), i.e., zone 3 conditions, but reduce IVC venous return when Pivc is below the sum of Pab and Pc, i.e., zone 2 conditions. The validity of the model was tested in 12 canine experiments with an open-chest IVC bypass. An increase in Pab produced by phrenic stimulation increased the IVC venous return when Pivc - Pab was positive but decreased the IVC venous return when Pivc - Pab was negative. The value of Pivc - Pab that separated net increases from decreases in venous return was 1.00 ± 0.72 (SE) mmHg (n = 6). An increase in Pivc did not influence the femoral venous pressure when Pivc was lower than the sum of Pab and a constant, 0.96 ± 0.70 mmHg (n = 6), consistent with presence of a waterfall. These results agreed closely with the predictions of the model and its computer simulation. The abdominal venous compartment appears to function with changes in Pab either as a capacitor in zone 3 conditions or as a collapsible Starling resistor with little wall tone in zone 2 conditions.

Original languageEnglish (US)
Pages (from-to)1961-1972
Number of pages12
JournalJournal of Applied Physiology
Volume69
Issue number6
StatePublished - 1990

Fingerprint

Venous Pressure
Inferior Vena Cava
Blood Vessels
Diaphragm
Pressure
Starlings
Thigh
Computer Simulation
Canidae
Thorax
Lung

Keywords

  • cardiac output
  • cardiorespiratory
  • computer
  • dog
  • model
  • simulation
  • vena cava

ASJC Scopus subject areas

  • Endocrinology
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Effects of abdominal pressure on venous return : Abdominal vascular zone conditions. / Takata, M.; Wise, Robert A; Robotham, J. L.

In: Journal of Applied Physiology, Vol. 69, No. 6, 1990, p. 1961-1972.

Research output: Contribution to journalArticle

@article{766b7075b1e0479f85235827e963ee68,
title = "Effects of abdominal pressure on venous return: Abdominal vascular zone conditions",
abstract = "The effects of changes in abdominal pressure (Pab) on inferior vena cava (IVC) venous return were analyzed using a model of the IVC circulation based on a concept of abdominal vascular zone conditions analogous to pulmonary vascular zone conditions. We hypothesized that an increase in Pab would increase IVC venous return when the IVC pressure at the level of the diaphragm (Pivc) exceeds the sum of Pab and the critical closing transmural pressure (Pc), i.e., zone 3 conditions, but reduce IVC venous return when Pivc is below the sum of Pab and Pc, i.e., zone 2 conditions. The validity of the model was tested in 12 canine experiments with an open-chest IVC bypass. An increase in Pab produced by phrenic stimulation increased the IVC venous return when Pivc - Pab was positive but decreased the IVC venous return when Pivc - Pab was negative. The value of Pivc - Pab that separated net increases from decreases in venous return was 1.00 ± 0.72 (SE) mmHg (n = 6). An increase in Pivc did not influence the femoral venous pressure when Pivc was lower than the sum of Pab and a constant, 0.96 ± 0.70 mmHg (n = 6), consistent with presence of a waterfall. These results agreed closely with the predictions of the model and its computer simulation. The abdominal venous compartment appears to function with changes in Pab either as a capacitor in zone 3 conditions or as a collapsible Starling resistor with little wall tone in zone 2 conditions.",
keywords = "cardiac output, cardiorespiratory, computer, dog, model, simulation, vena cava",
author = "M. Takata and Wise, {Robert A} and Robotham, {J. L.}",
year = "1990",
language = "English (US)",
volume = "69",
pages = "1961--1972",
journal = "Journal of Applied Physiology",
issn = "0161-7567",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Effects of abdominal pressure on venous return

T2 - Abdominal vascular zone conditions

AU - Takata, M.

AU - Wise, Robert A

AU - Robotham, J. L.

PY - 1990

Y1 - 1990

N2 - The effects of changes in abdominal pressure (Pab) on inferior vena cava (IVC) venous return were analyzed using a model of the IVC circulation based on a concept of abdominal vascular zone conditions analogous to pulmonary vascular zone conditions. We hypothesized that an increase in Pab would increase IVC venous return when the IVC pressure at the level of the diaphragm (Pivc) exceeds the sum of Pab and the critical closing transmural pressure (Pc), i.e., zone 3 conditions, but reduce IVC venous return when Pivc is below the sum of Pab and Pc, i.e., zone 2 conditions. The validity of the model was tested in 12 canine experiments with an open-chest IVC bypass. An increase in Pab produced by phrenic stimulation increased the IVC venous return when Pivc - Pab was positive but decreased the IVC venous return when Pivc - Pab was negative. The value of Pivc - Pab that separated net increases from decreases in venous return was 1.00 ± 0.72 (SE) mmHg (n = 6). An increase in Pivc did not influence the femoral venous pressure when Pivc was lower than the sum of Pab and a constant, 0.96 ± 0.70 mmHg (n = 6), consistent with presence of a waterfall. These results agreed closely with the predictions of the model and its computer simulation. The abdominal venous compartment appears to function with changes in Pab either as a capacitor in zone 3 conditions or as a collapsible Starling resistor with little wall tone in zone 2 conditions.

AB - The effects of changes in abdominal pressure (Pab) on inferior vena cava (IVC) venous return were analyzed using a model of the IVC circulation based on a concept of abdominal vascular zone conditions analogous to pulmonary vascular zone conditions. We hypothesized that an increase in Pab would increase IVC venous return when the IVC pressure at the level of the diaphragm (Pivc) exceeds the sum of Pab and the critical closing transmural pressure (Pc), i.e., zone 3 conditions, but reduce IVC venous return when Pivc is below the sum of Pab and Pc, i.e., zone 2 conditions. The validity of the model was tested in 12 canine experiments with an open-chest IVC bypass. An increase in Pab produced by phrenic stimulation increased the IVC venous return when Pivc - Pab was positive but decreased the IVC venous return when Pivc - Pab was negative. The value of Pivc - Pab that separated net increases from decreases in venous return was 1.00 ± 0.72 (SE) mmHg (n = 6). An increase in Pivc did not influence the femoral venous pressure when Pivc was lower than the sum of Pab and a constant, 0.96 ± 0.70 mmHg (n = 6), consistent with presence of a waterfall. These results agreed closely with the predictions of the model and its computer simulation. The abdominal venous compartment appears to function with changes in Pab either as a capacitor in zone 3 conditions or as a collapsible Starling resistor with little wall tone in zone 2 conditions.

KW - cardiac output

KW - cardiorespiratory

KW - computer

KW - dog

KW - model

KW - simulation

KW - vena cava

UR - http://www.scopus.com/inward/record.url?scp=0025597892&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025597892&partnerID=8YFLogxK

M3 - Article

VL - 69

SP - 1961

EP - 1972

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 0161-7567

IS - 6

ER -