Effect of Surface Curvature on Stability, Thermodynamic Behavior, and Osmotic Activity of Dipalmitoylphosphatidylcholine Single Lamellar Vesicles

E. Freire, C. F. Schmidt, P. L. Feigner, T. E. Thompson, D. Lichtenberg, Y. Barenholz

Research output: Contribution to journalArticle

Abstract

The size and surface curvature dependence of the properties and stability of single lamellar vesicles have been investigated by using a variety of physicochemical techniques. Dipalmitoylphosphatidylcholine single lamellar vesicles of sizes ranging between 200 and 900Å in diameter have been prepared by the French press method and characterized with respect to their size distribution, stability, and thermotropic behavior by negative stain electron microscopy, molecular sieve chromatography, nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. Vesicles with a diameter smaller than 400Å are unstable below their transition temperature and fuse spontaneously to form larger single lamellar vesicles. Correlation analysis of experimentally obtained size distributions and calorimetric phase transitions profiles allowed estimation of the size dependence of the transition temperature. The phase transition temperature depends on the vesicle size in a sigmoidal fashion. Throughout the entire 200-700Å diameter range, the phase transition parameters are sensitive to size; however, the size dependence is especially pronounced around 400Å in diameter. The anomalous size dependence of the transition temperature for vesicles smaller than 400Å in diameter has been attributed to a decrease in the effective bilayer curvature due to packing rearrangements of the lipid molecules. Changes in the fractional degree of self-quenching of trapped 6-carboxyfluorescein induced by osmotic stress indicate that large single lamellar vesicles are not spherical under isoosmotic conditions. These vesicles are relatively flexible and can sustain almost a 2-fold increase in their internal aqueous volume without any leakage of the internal content.

Original languageEnglish (US)
Pages (from-to)3462-3467
Number of pages6
JournalBiochemistry
Volume20
Issue number12
DOIs
StatePublished - Jun 1981

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Effect of Surface Curvature on Stability, Thermodynamic Behavior, and Osmotic Activity of Dipalmitoylphosphatidylcholine Single Lamellar Vesicles'. Together they form a unique fingerprint.

  • Cite this