Effect of shear stress on coagulation and inflammation in implantable artificial lungs

K. E. Cook, J. B. Maxhimer, J. E. Hubbard, C. Mavroudis, L. F. Mockros

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Excessive shear and blood contact with prosthetic surfaces is known to activate the coagulation and immune systems. The effect of shear is not known, however, in low-shear flow within implantable artificial lungs. Sterile, heparinized, recalcified pig blood was circulated within a test circuit containing a 150 ml reservoir, silicone tubing, and a miniature artificial lung (MAL). Each group of MALs (n=3 in each) had identical surface areas and transit times, but were designed to impose a different shear stress. Two circuits were tested simultaneously with blood from the same batch, one circuit with fiber in the MAL and a second, control circuit without fiber. Blood was sampled prior to addition to the circuit and at 15, 30, 90, and 240 minutes after initiation of flow. Complete blood counts were performed, and FXIIa, C3d, surface-expressed p-selectin, and lactoferrin concentrations were measured. The effect of the fiber, and thus shear, on these measures of activation was determined by subtracting control from fiber results. Average shear stresses for the three groups were 3.75±0.47, 8.45±0.60, and 12.7±0.30. Platelet and leukocyte counts showed no significant differences due to shear or time. Concentrations of all soluble factors increased progressively with time (1.4×10-6<p<0.014). P-selectin and lactoferrin were significantly higher in high vs. medium shear (p<0.02 and 0.01, respectively), while FXIIa is higher in medium vs. high shear (p<0.003). These low shear levels, therefore, have complex effects, but cellular activation levels do correlate with shear.

Original languageEnglish (US)
Pages (from-to)194
Number of pages1
JournalUnknown Journal
Volume46
Issue number2
DOIs
StatePublished - 2000
Externally publishedYes
Event46th Annual Conference and Exposition of ASAIO - New York, NY, USA
Duration: Jun 28 2000Jul 1 2000

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Effect of shear stress on coagulation and inflammation in implantable artificial lungs'. Together they form a unique fingerprint.

Cite this