Effect of outer hair cell membrane piezoelectric properties on the receptor potential under high-frequency conditions

A. A. Spector, W. E. Brownell, A. S. Popel

Research output: Contribution to journalConference article

Abstract

We have found that the band pass characteristics of the cochlear outer hair cell can be improved by introducing the piezoelectric properties of the cell membrane. In contrast to the conventional analysis, the cell membrane receptor potential does not tend to zero and at any frequency is greater than a limiting value. The piezoelectric properties cause an additional, strain-dependent, displacement current in the cell wall. In short cells, we have found that for the low-frequency value about 2-3 mV and the strain level 0.1% the receptor potential can reach 0.4 mV throughout the whole frequency range. In long cells, we have found that the effect of the piezoelectric properties is negligible.

Original languageEnglish (US)
Pages (from-to)369-370
Number of pages2
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume1
StatePublished - Dec 1 2002
EventProceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) - Houston, TX, United States
Duration: Oct 23 2002Oct 26 2002

Keywords

  • Cochlea
  • Hair cell
  • Piezoelectricity

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Effect of outer hair cell membrane piezoelectric properties on the receptor potential under high-frequency conditions'. Together they form a unique fingerprint.

  • Cite this