TY - JOUR
T1 - Effect of N(G)-nitro-L-arginine methyl ester on autonomic modulation of heart rate variability during hypovolemic shock
AU - Goldstein, Brahm
AU - Mickelsen, Deanne
AU - Want, Andrew
AU - Tipton, Rebecca
AU - Cox, Christopher
AU - Woolf, Paul D.
PY - 1999/11/10
Y1 - 1999/11/10
N2 - Objective: To study the changes in neuroautonomic regulation of heart rate and the effects of N(G)-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of nitric oxide synthase, on efferent sympathetic cardiac activity and blood pressure during hypovolemic shock. Hypotension during hypovolemic shock may be attributable, in part, to the failure of neuroautonomic regulation of heart rate and blood pressure. In addition, the release of nitric oxide may contribute to hypotension through vasodilation and inhibition of efferent sympathetic activity. Design: Prospective, controlled trial. Setting: Experimental laboratory in a university hospital. Subjects: Seventeen anesthetized adult male New Zealand White rabbits. Interventions: The rabbits were divided into four groups: control (n = 3), control plus L-NAME (n = 5), hypovolemic (n = 4), and hypovolemic plus L-NAME (n = 5). Hypovolemic rabbits were bled of 10% of their circulating blood volume (85 mL/kg) every 10 mins until 30% cumulative hypovolemia was reached. Rabbits received either three doses of saline 1 mL/kg every 10 mins or L-NAME 10 mg/kg in 1 mL/kg of saline solution administered after each hemorrhage for a total of three doses. Changes in heart rate, respiratory rate, mean arterial pressure, plasma catecholamine levels, and heart rate power spectra were recorded every 10 mins during serial hypovolemia and during a 30-min recovery period. Measurements and Main Results: During hypovolemic shock there was a decrease in log low-frequency heart rate power (p = .001) and in systolic (p = .003), diastolic (p < .001), and mean (p < .001) blood pressures compared with control rabbits. Treatment with L-NAME during hypovolemia resulted in increased log low-frequency heart rate power (p = .03) and systolic (p = .01), diastolic (p = .007), and mean (p = .009) blood pressures compared with hypovolemic rabbits who received saline placebo. Conclusions: We found that treatment with L-NAME increased efferent sympathetic cardiac activity and mean arterial pressure during hypovolemic shock compared with control rabbits. We conclude that L-NAME may blunt hypotension during hypovolemic shock by inhibiting nitric oxide synthase and may act to restore neuroautonomic cardiovascular reactivity. Spectral analysis of heart rate variability may allow for insights into the pathophysiology of shock and provide a means of monitoring the neuroautonomic cardiovascular response to therapy.
AB - Objective: To study the changes in neuroautonomic regulation of heart rate and the effects of N(G)-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of nitric oxide synthase, on efferent sympathetic cardiac activity and blood pressure during hypovolemic shock. Hypotension during hypovolemic shock may be attributable, in part, to the failure of neuroautonomic regulation of heart rate and blood pressure. In addition, the release of nitric oxide may contribute to hypotension through vasodilation and inhibition of efferent sympathetic activity. Design: Prospective, controlled trial. Setting: Experimental laboratory in a university hospital. Subjects: Seventeen anesthetized adult male New Zealand White rabbits. Interventions: The rabbits were divided into four groups: control (n = 3), control plus L-NAME (n = 5), hypovolemic (n = 4), and hypovolemic plus L-NAME (n = 5). Hypovolemic rabbits were bled of 10% of their circulating blood volume (85 mL/kg) every 10 mins until 30% cumulative hypovolemia was reached. Rabbits received either three doses of saline 1 mL/kg every 10 mins or L-NAME 10 mg/kg in 1 mL/kg of saline solution administered after each hemorrhage for a total of three doses. Changes in heart rate, respiratory rate, mean arterial pressure, plasma catecholamine levels, and heart rate power spectra were recorded every 10 mins during serial hypovolemia and during a 30-min recovery period. Measurements and Main Results: During hypovolemic shock there was a decrease in log low-frequency heart rate power (p = .001) and in systolic (p = .003), diastolic (p < .001), and mean (p < .001) blood pressures compared with control rabbits. Treatment with L-NAME during hypovolemia resulted in increased log low-frequency heart rate power (p = .03) and systolic (p = .01), diastolic (p = .007), and mean (p = .009) blood pressures compared with hypovolemic rabbits who received saline placebo. Conclusions: We found that treatment with L-NAME increased efferent sympathetic cardiac activity and mean arterial pressure during hypovolemic shock compared with control rabbits. We conclude that L-NAME may blunt hypotension during hypovolemic shock by inhibiting nitric oxide synthase and may act to restore neuroautonomic cardiovascular reactivity. Spectral analysis of heart rate variability may allow for insights into the pathophysiology of shock and provide a means of monitoring the neuroautonomic cardiovascular response to therapy.
KW - Heart rate power spectra
KW - Hemorrhagic shock
KW - L-NAME
KW - N(G)-nitro-L-arginine methyl ester
KW - Plasma catecholamines
UR - http://www.scopus.com/inward/record.url?scp=0032708496&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032708496&partnerID=8YFLogxK
U2 - 10.1097/00003246-199910000-00029
DO - 10.1097/00003246-199910000-00029
M3 - Article
C2 - 10548214
AN - SCOPUS:0032708496
VL - 27
SP - 2239
EP - 2245
JO - Critical Care Medicine
JF - Critical Care Medicine
SN - 0090-3493
IS - 10
ER -