Abstract
In addition to the conserved translation elongation factors eEF1A and eEF2, fungi require a third essential elongation factor, eEF3. While eEF3 has been implicated in tRNA binding and release at the A and E sites, its exact mechanism of action is unclear. Here we show that eEF3 acts at the mRNA–tRNA translocation step by promoting the dissociation of the tRNA from the E site, but independent of aminoacyl-tRNA recruitment to the A site. Depletion of eEF3 in vivo leads to a general slow-down in translation elongation due to accumulation of ribosomes with an occupied A site. Cryo-EM analysis of ex vivo eEF3-ribosome complexes shows that eEF3 facilitates late steps of translocation by favoring nonrotated ribosomal states as well as by opening the L1 stalk to release the E-site tRNA. Additionally, our analysis provides structural insights into novel translation elongation states, enabling presentation of a revised yeast translation elongation cycle.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Jul 1 2020 |
Keywords
- ABC ATPase
- Cryo-EM
- E-site tRNA
- EEF3
- L1 stalk
- Translation elongation
- Translocation
- Yeast
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)