Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster.

M. M. Myat, D. D. Isaac, Deborah J Andrew

Research output: Contribution to journalArticle

Abstract

Studies of Drosophila salivary gland formation have elucidated the regulatory pathway by which the salivary gland fate is determined and the morphogenetic processes by which the primordial cells are internalized to form the tubular glands. Both the position of the salivary primordia and the number of cells recruited to a salivary gland fate are established through a combination of the localized expression of the transcription factors SEX COMBS REDUCED (SCR), TEASHIRT (TSH) and ABDOMINAL-B (ABD-B), and localized DPP-signaling. Similarly, the distinction between the two major cell types, duct and secretory, is determined by spatially limited EGF-signaling. Salivary gland formation also requires the function of two transcription factors expressed in nearly all cells of the developing embryo, EXTRADENTICLE (EXD) and HOMOTHORAX (HTH). Once the salivary gland fate is determined, cells of the secretory primordia are internalized by an apical constriction mode of invagination. We have characterized three genes encoding transcription factors, trachealess (trh), hückebein (hkb), and fork head (fkh), that are downstream targets of the salivary gland regulators. Mutations in these transcription factors profoundly affect salivary gland morphogenesis. trh is required for the formation of the salivary duct tubes. hkb determines the order of secretory cell invagination, a regulated process critical for determining the final shape of the salivary gland. fkh has two early roles in salivary gland formation. fkh both promotes secretory cell survival and facilitates secretory cell internalization. trh, hkb, and fkh are involved in the formation of not only the salivary duct and secretory tubes, but also of other tubular structures, such as the trachea and the gut endoderm. We propose that trh, hkb, and fkh may serve as "morphogenetic cassettes" responsible for forming tubular structures in a variety of tissues.

Original languageEnglish (US)
Pages (from-to)89-98
Number of pages10
JournalAdvances in dental research
Volume14
StatePublished - 2000

Fingerprint

Salivary Glands
Drosophila melanogaster
Morphogenesis
Genes
Head
Transcription Factors
Salivary Ducts
Comb and Wattles
Endoderm
Trachea
Epidermal Growth Factor
Constriction
Drosophila
Cell Survival
Embryonic Structures
Cell Count
Mutation

Cite this

Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster. / Myat, M. M.; Isaac, D. D.; Andrew, Deborah J.

In: Advances in dental research, Vol. 14, 2000, p. 89-98.

Research output: Contribution to journalArticle

@article{90e4b3ba7a7b4b93acd4844ec38bf7d9,
title = "Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster.",
abstract = "Studies of Drosophila salivary gland formation have elucidated the regulatory pathway by which the salivary gland fate is determined and the morphogenetic processes by which the primordial cells are internalized to form the tubular glands. Both the position of the salivary primordia and the number of cells recruited to a salivary gland fate are established through a combination of the localized expression of the transcription factors SEX COMBS REDUCED (SCR), TEASHIRT (TSH) and ABDOMINAL-B (ABD-B), and localized DPP-signaling. Similarly, the distinction between the two major cell types, duct and secretory, is determined by spatially limited EGF-signaling. Salivary gland formation also requires the function of two transcription factors expressed in nearly all cells of the developing embryo, EXTRADENTICLE (EXD) and HOMOTHORAX (HTH). Once the salivary gland fate is determined, cells of the secretory primordia are internalized by an apical constriction mode of invagination. We have characterized three genes encoding transcription factors, trachealess (trh), h{\"u}ckebein (hkb), and fork head (fkh), that are downstream targets of the salivary gland regulators. Mutations in these transcription factors profoundly affect salivary gland morphogenesis. trh is required for the formation of the salivary duct tubes. hkb determines the order of secretory cell invagination, a regulated process critical for determining the final shape of the salivary gland. fkh has two early roles in salivary gland formation. fkh both promotes secretory cell survival and facilitates secretory cell internalization. trh, hkb, and fkh are involved in the formation of not only the salivary duct and secretory tubes, but also of other tubular structures, such as the trachea and the gut endoderm. We propose that trh, hkb, and fkh may serve as {"}morphogenetic cassettes{"} responsible for forming tubular structures in a variety of tissues.",
author = "Myat, {M. M.} and Isaac, {D. D.} and Andrew, {Deborah J}",
year = "2000",
language = "English (US)",
volume = "14",
pages = "89--98",
journal = "Advances in dental research",
issn = "0895-9374",
publisher = "International Association for Dental Research",

}

TY - JOUR

T1 - Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster.

AU - Myat, M. M.

AU - Isaac, D. D.

AU - Andrew, Deborah J

PY - 2000

Y1 - 2000

N2 - Studies of Drosophila salivary gland formation have elucidated the regulatory pathway by which the salivary gland fate is determined and the morphogenetic processes by which the primordial cells are internalized to form the tubular glands. Both the position of the salivary primordia and the number of cells recruited to a salivary gland fate are established through a combination of the localized expression of the transcription factors SEX COMBS REDUCED (SCR), TEASHIRT (TSH) and ABDOMINAL-B (ABD-B), and localized DPP-signaling. Similarly, the distinction between the two major cell types, duct and secretory, is determined by spatially limited EGF-signaling. Salivary gland formation also requires the function of two transcription factors expressed in nearly all cells of the developing embryo, EXTRADENTICLE (EXD) and HOMOTHORAX (HTH). Once the salivary gland fate is determined, cells of the secretory primordia are internalized by an apical constriction mode of invagination. We have characterized three genes encoding transcription factors, trachealess (trh), hückebein (hkb), and fork head (fkh), that are downstream targets of the salivary gland regulators. Mutations in these transcription factors profoundly affect salivary gland morphogenesis. trh is required for the formation of the salivary duct tubes. hkb determines the order of secretory cell invagination, a regulated process critical for determining the final shape of the salivary gland. fkh has two early roles in salivary gland formation. fkh both promotes secretory cell survival and facilitates secretory cell internalization. trh, hkb, and fkh are involved in the formation of not only the salivary duct and secretory tubes, but also of other tubular structures, such as the trachea and the gut endoderm. We propose that trh, hkb, and fkh may serve as "morphogenetic cassettes" responsible for forming tubular structures in a variety of tissues.

AB - Studies of Drosophila salivary gland formation have elucidated the regulatory pathway by which the salivary gland fate is determined and the morphogenetic processes by which the primordial cells are internalized to form the tubular glands. Both the position of the salivary primordia and the number of cells recruited to a salivary gland fate are established through a combination of the localized expression of the transcription factors SEX COMBS REDUCED (SCR), TEASHIRT (TSH) and ABDOMINAL-B (ABD-B), and localized DPP-signaling. Similarly, the distinction between the two major cell types, duct and secretory, is determined by spatially limited EGF-signaling. Salivary gland formation also requires the function of two transcription factors expressed in nearly all cells of the developing embryo, EXTRADENTICLE (EXD) and HOMOTHORAX (HTH). Once the salivary gland fate is determined, cells of the secretory primordia are internalized by an apical constriction mode of invagination. We have characterized three genes encoding transcription factors, trachealess (trh), hückebein (hkb), and fork head (fkh), that are downstream targets of the salivary gland regulators. Mutations in these transcription factors profoundly affect salivary gland morphogenesis. trh is required for the formation of the salivary duct tubes. hkb determines the order of secretory cell invagination, a regulated process critical for determining the final shape of the salivary gland. fkh has two early roles in salivary gland formation. fkh both promotes secretory cell survival and facilitates secretory cell internalization. trh, hkb, and fkh are involved in the formation of not only the salivary duct and secretory tubes, but also of other tubular structures, such as the trachea and the gut endoderm. We propose that trh, hkb, and fkh may serve as "morphogenetic cassettes" responsible for forming tubular structures in a variety of tissues.

UR - http://www.scopus.com/inward/record.url?scp=0034585831&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034585831&partnerID=8YFLogxK

M3 - Article

C2 - 2002142321

AN - SCOPUS:0034585831

VL - 14

SP - 89

EP - 98

JO - Advances in dental research

JF - Advances in dental research

SN - 0895-9374

ER -