TY - JOUR
T1 - Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides
T2 - Understanding randomness in alloreactivity incidence following stem cell transplantation
AU - Koparde, Vishal
AU - Razzaq, Badar Abdul
AU - Suntum, Tara
AU - Sabo, Roy
AU - Scalora, Allison
AU - Serrano, Myrna
AU - Jameson-Lee, Max
AU - Hall, Charles
AU - Kobulnicky, David
AU - Sheth, Nihar
AU - Feltz, Juliana
AU - Contaifer, Daniel
AU - Wijesinghe, Dayanjan
AU - Reed, Jason
AU - Roberts, Catherine
AU - Qayyum, Rehan
AU - Buck, Gregory
AU - Neale, Michael
AU - Toor, Amir
N1 - Funding Information:
This study conducted at Virginia Commonwealth University’s Massey Cancer Center was supported, in part, by research funding from the NIH-NCI Cancer Center Support Grant (P30-CA016059; PI: Gordon Ginder, MD) and by research funding from Virginia’s Commonwealth Health Research Board Grant #236-11-13 (PI: Michael Neale, PhD). This study conducted at Virginia Commonwealth University’s Massey Cancer Center was supported, in part, by research funding from the NIH-NCI Cancer Center Support Grant (P30-CA016059; PI: Gordon Ginder, MD) and by research funding from Virginia’s Commonwealth Health Research Board Grant #236-11-13 (PI: Michael Neale, PhD).
Publisher Copyright:
© 2017 Koparde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/12
Y1 - 2017/12
N2 - Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone’s proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.
AB - Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone’s proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.
UR - http://www.scopus.com/inward/record.url?scp=85036617943&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85036617943&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0187771
DO - 10.1371/journal.pone.0187771
M3 - Article
C2 - 29194460
AN - SCOPUS:85036617943
SN - 1932-6203
VL - 12
JO - PLoS One
JF - PLoS One
IS - 12
M1 - e0187771
ER -