Dynamic dosimetry and edema detection in prostate brachytherapy - A complete system

A. Jain, A. Deguet, I. Iordachita, G. Chintalapani, J. Blevins, Y. Le, E. Armour, C. Burdette, D. Song, G. Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods: Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy delivery system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction: pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results: In precision-machined hard phantoms with 40-100 seeds and soft tissue phantoms with 45-87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on 6 patients with 48-82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of 4.17 (1-9) additional seeds. Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions: The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a significantly more homogeneous seed distribution, and has the potential to affect a paradigm shift in clinical practice. Large scale studies and commercialization are currently underway.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2008 - Visualization, Image-Guided Procedures, and Modeling
StatePublished - 2008
EventMedical Imaging 2008 - Visualization, Image-Guided Procedures, and Modeling - San Diego, CA, United States
Duration: Feb 17 2008Feb 19 2008

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2008 - Visualization, Image-Guided Procedures, and Modeling
Country/TerritoryUnited States
CitySan Diego, CA


  • Edema
  • Fluoroscopic guidance
  • Low cost
  • Prostate brachytherapy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Dynamic dosimetry and edema detection in prostate brachytherapy - A complete system'. Together they form a unique fingerprint.

Cite this