Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects

Benjamin Levi, Emily R. Nelson, Shuli Li, Aaron W. James, Jeong S. Hyun, Daniel T. Montoro, Min Lee, Jason P. Glotzbach, George W. Commons, Michael T. Longaker

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Human adipose-derived stromal cells (hASCs) have a proven capacity to aid in osseous repair of calvarial defects. However, the bone defect microenvironment necessary for osseous healing is not fully understood. In this study, we postulated that the cell-cell interaction between engrafted ASCs and host dura mater (DM) cells is critical for the healing of calvarial defects. hASCs were engrafted into critical sized calvarial mouse defects. The DM-hASC interaction was manipulated surgically by DM removal or by insertion of a semipermeable or nonpermeable membrane between DM and hASCs. Radiographic, histologic, and gene expression analyses were performed. Next, the hASCDM interaction is assessed by conditioned media (CM) and coculture assays. Finally, bone morphogenetic protein (BMP) signaling from DM was investigated in vivo using novel BMP-2 and anti-BMP-2/4 slow releasing scaffolds. With intact DM, osseous healing occurs both from host DM and engrafted hASCs. Interference with the DMhASC interaction dramatically reduced calvarial healing with abrogated BMP-2 - Smad-1/5 signaling. Using CM and coculture assays, mouse DM cells stimulated hASC osteogenesis via BMP signaling. Through in vivo manipulation of the BMP-2 pathway, we found that BMP-2 plays an important role in DM stimulation of hASC osteogenesis in the context of calvarial bone healing. BMP-2 supplementation to a defect with disrupted DM allowed for bone formation in a nonhealing defect. DM is an osteogenic cell type that both participates in and stimulates osseous healing in a hASC-engrafted calvarial defect. Furthermore, DM-derived BMP-2 paracrine stimulation appears to play a key role for hASC mediated repair.

Original languageEnglish (US)
Pages (from-to)1241-1255
Number of pages15
JournalStem Cells
Volume29
Issue number8
DOIs
StatePublished - Aug 2011
Externally publishedYes

Keywords

  • Bone morphogenetic protein
  • Calvarial defect
  • Dura mater
  • Multipotent stromal cells
  • Skeletal tissue engineering
  • Tissue regeneration

ASJC Scopus subject areas

  • Molecular Medicine
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects'. Together they form a unique fingerprint.

Cite this