DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells

Faith A. Bazley, Amir Pourmorteza, Siddharth Gupta, Nikta Pashai, Candace Kerr, Angelo H. All

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

We describe the feasibility of using diffusion tensor magnetic resonance imaging (DT-MRI) to study a contusive model of rat spinal cord injury following human stem cell transplantation at and around the site of injury. Rats receiving either a laminectomy or contusion injury were transplanted with oligodendrocyte precursor cells (OPCs). During the course of the study, bioluminescence imaging (BLI; up to 100 days) and somatosensory evoked potentials (SSEPs; up to 42 days) were used to evaluate cell survival and functional outcomes. Spinal cords were then analyzed ex vivo upon termination using diffusion tensor imaging (DTI). Improvements in fractional anisotropy (FA) at day 100 post-transplantation corresponded with cell survival and functional SSEP improvements. Thus, we illustrate the feasibility of DTI for evaluating axonal integrity in SCI after cell replacement therapies, and we provide examples utilizing OPC transplantations in a contusion rat model.

Original languageEnglish (US)
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages82-85
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells'. Together they form a unique fingerprint.

Cite this