Drug concentration asymmetry in tissues and plasma for small molecule-related therapeutic modalities

Donglu Zhang, Cornelis E.C.A. Hop, Gabriela Patilea-Vrana, Gautham Gampa, Herana Kamal Seneviratne, Jashvant D. Unadkat, Jane R. Kenny, Karthik Nagapudi, Li Di, Lian Zhou, Mark Zak, Matthew R. Wright, Namandjé N. Bumpus, Richard Zang, Xingrong Liu, Yurong Lai, S. Cyrus Khojasteh

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by Kp,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., Kp,uu > or <1) and discusses the limitations of the surrogate approach of using plasmafree drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.

Original languageEnglish (US)
Pages (from-to)1122-1135
Number of pages14
JournalDrug Metabolism and Disposition
Issue number10
StatePublished - 2019

ASJC Scopus subject areas

  • Pharmacology
  • Pharmaceutical Science


Dive into the research topics of 'Drug concentration asymmetry in tissues and plasma for small molecule-related therapeutic modalities'. Together they form a unique fingerprint.

Cite this